
On realization of floating-point
directed interval arithmetic

Andrzej Marciniak
Poznań University of Technology, Institute of Computing Science, Piotrowo 2, 60-965 Poznań, Poland

e-mail: Andrzej.Marciniak@put.poznan.pl

 (September 6, 2012)

Abstract : In the paper we present a realization of basic arithmetic operations in floating-point directed interval arithmetic
which differs from the one presented e.g. in [9] and which is included in the PASCAL–XSC programming language. Our
approach guarantees obtaining only one resulting interval in each floating-point operation regardless of intervals (proper
or directed) used as operands. This interval includes all possible rounding errors.

Key words: interval arithmetic, directed interval arithmetic, floating-point directed interval arithmetic, estimation of
rounding errors

I. INTRODUCTION

Floating-point interval arithmetic is a way for automatic estimation of rounding errors. Using machine
intervals we can also represent any real number (in mathematical sense) which is not exactly represented in
computers in the form of interval. It is sufficient to represent such a number as the interval with the ends being
two succeeding machine numbers between the given real number is included.

There are known two interval arithmetic. The first one operates only on proper intervals, i.e. on intervals
with left ends less or equal to the right ends. In th second interval arithmetic, called directed interval arith-
metic, an interval is a set of ordered couples of finite real numbers and the left end of interval can be greater
than the right one. Of course, a realization of directed interval arithmetic on computers is more complicated
than proper interval arithmetic.

The main reasons for developing directed interval arithmetic are such that in proper interval arithmetic there
are not exist inverse elements with respect to the addition and to the multiplication of intervals. It means that
the solutions of equations

and

where A and B are known intervals and X is unknown, can not be solved in general. But in a number of
problems such equations or system of equations arise and should be solved.

An realization of proper interval arithmetic on computers is documented, among others, in [2] S [6]. In [4]
and [5] one can find a description of implementations of this arithmetic in the C–XSC and PASCAL–XSC

A X B+ =

A X B× = ,

A. Marciniak, On realization of floating-point directed interval arithmetic 2

computer languages, respectively. Details concerning directed interval arithmetic and its applications can be
found in [7], while its implementation in IEEE floating-point environment has been presented in [9].

The implementation presented in [9] consists in finding for any single arithmetic operation two intervals:
one with so called outward rounding and one with inward rounding, and there is a problem with choosing only
one interval for further calculations. Since theoretically we can consider also two other resulting intervals, we
propose to chose an appropriate resulting interval on the basis of the widths of intervals and to provide all
calculations using Extended real type (accessible e.g. in the Delphi programming language) instead IEEE
Double real type. For this purpose we have extended our Delphi IntervalArithmetic unit, given in [6], to per-
form all basic arithmetic operations on improper intervals.

In the paper we present our approach for floating-point basic arithmetic operations on directed intervals in
details using a pseudocode.

II. BASIC ARITHMETIC OPERATIONS

Let the set H defined by

be the set of all ordered couples of finite real numbers. Moreover, let us denote

For a directed interval let us define the sign operator F byA a a= − +[,]

and a binary variable direction operator J by

According to [7] and [9], the addition in H is defined as follows:

For multiplication in H we have

H a b a b R IR IR IR a a a a a a R= ∈ = ∪ = ≥ ∈− + − + − +{[,]: , } , {[,]: ; , }where

Τ = ∈ ≤ ∪ ∈ ≤ = ∪− + − +{ : } { : } .A IR a a A IR a a Z Z0 0

σ ()
, ,
, , [,],

A
a a

a a A
=

+ ≤ ≤
− ≤ ≤ ≠

− +

− +

if and
if and but

0 0
0 0 0 0

τ ()
, ,
, .

A
a a

=
+ ≤
−

− +if
otherwise

A B a b a b A B H+ = + + ∈− − + +[,], , ,for

A. Marciniak, On realization of floating-point directed interval arithmetic 3

From the definition of multiplication for B 0 H we obtain

Thus, the subtraction can be defined as

Let us note that in H there exist inverse elements with respect to the operations + and ×. Namely, we have

Moreover, for there also exists a set inversion operatorA a a H= ∈− +[,] \Τ

where such that Thus, we can define the division as follows:A a a−
+ −= [,], 1 1 1 1/ (/) / (/) .h hA A A= = −

It should be mention that to every directed interval we can assign a proper intervalA a a H= ∈− +[,]
pro(A) with (see [7])

Such an interval is called the projection of A on a the set of proper intervals or the proper projection of A.
In a number of papers, among others in [7] and [9], one can find a lot of interesting properties of directed

intervals. We omit a discussion of them because they are out of scope of the topic of this paper.

A B

a b a A B H
a b a b A H B
a b a b A B H

a b a b a b a b A B Z

B A B A

A B A A B A

B B A B B A

× =

∈
∈ ∈
∈ ∈

∈

− −

−

−

− + + − − − + +

[,], , \ ,
[,], \ , ,
[,], , \ ,
[min{ , }, max{ , }], , ,

() () () ()

() () () () () ()

() () () () () ()

σ σ σ σ

σ τ σ σ τ σ

σ σ τ σ σ τ

for
for
for

for

Τ
Τ Τ

Τ Τ

[max{ , }, min{ , }], , ,
, , , .

a b a b a b a b A B Z
A Z B Z A Z B Z

− − + + − + + − ∈
∈ ∈ ∈ ∈

for
for or0

() [,] .− × = − − = −+ −1 B b b B

A B A B a b a b A B H− = + − = − − ∈− + + −() [,], , .

− = − − ∈

= ∈

− +

− +

h

h

A a a A H
A a a A H

[,], ,
/ [/ , /], \ .

for
for1 1 1 Τ

1 1 1 1/ / [/ , /],A A a ah= =−
+ −

A B A B
a b a b A B H
a b a b A B H

B A B A

B B A B B A/ (/)
[/ , /], , \ ,
[/ , / , , \ .

() () () ()

() () () () () ()= × =
∈

∈ ∈

− −

− − −1
σ σ σ σ

σ σ τ σ σ τ

for
for

Τ
Τ Τ

pro
if
if

()
[,], () ,
[,], () .

A
a a A
a a A

=
= +
= −

− +

+ −

τ
τ

A. Marciniak, On realization of floating-point directed interval arithmetic 4

 1 A machine interval is an interval which both ends are exactly represented in a computer.
 2 The Extended type of real numbers are available e.g. in Delphi Pascal. This type has larger precision and range than
Double type in IEEE standards.

III. FLOATING-POINT ARITHMETIC OPERATIONS

A realization of directed interval arithmetic on computers has been presented in [9]. Omitting some details,
this realization consists in finding two resulting intervals for any operation B 0 {+, !, ×, /} and machine inter-
vals A and B1:

The operator represents so called outward rounding and the operator ? – inward rounding. The symbol L
is used for rounding toward !4 or downwardly directed and the symbol) S for rounding toward +4 or
upwardly directed. An implementation of such defined interval arithmetic operations in the PASCAL–XSC
language supporting IEEE floating-point standard is described in details in [9].

From the above formulas it follows that performing any single arithmetic operation we obtain two intervals
and there is a problem with choosing only one interval for further calculations. Moreover, from the theoretical
background one can consider two other resulting intervals, namely

Our proposition consists in choosing an appropriate resulting interval on the basis of the widths of intervals
and in providing all calculations using Extended real type2. From all possible resulting intervals we always
choose the worst case, i.e. the interval with the largest width. Below we present our approach for floating-
point basic arithmetic operations on directed intervals in details using a pseudocode.

First, let us introduce the floating-point width w of an interval A a a= − +[,]:

w a a: ()= −+ −∆
if w < 0
 then w w:= −
w a a: ()= ∇ −+ −

if w < 0
 then w w:= −
if w w<
 then w w:=

A realization of addition for may look as follows:A a a B b b= =− + − +[,] [,]and

if and (proper intervals)a a− +≤ b b− +≤
 then A B a b a b+ = ∇ + +− − + +[(), ()]∆
 else begin
 , c a b− − −= ∇ +: () c a b+ + += +: ()∆

◊ = ∇

= ∇

− +

− +

() [() , ()],
() [() , ()].
A B A B A B
A B A B A B
o o o

o o o

∆

Ο ∆

[() , ()] [() , ()].∇ ∇− + − +A B A B A B A Bo o o oand ∆ ∆

A. Marciniak, On realization of floating-point directed interval arithmetic 5

 , d a b− − −= +: ()∆ d a b+ + += ∇ +: ()
 calculate the width of w1 [,]c c− +

 calculate the width of w2 [,]d d− +

 if w w1 2≥
 then A B c c+ = − +: [,]
 else A B d d+ = − +: [,]
 end

For the subtraction we have:

if and (proper intervals)a a− +≤ b b− +≤
 then A B a b a b− = ∇ − −− + + −: [(), ()]∆
 else begin
 , c a b− − += ∇ −: () c a b+ + −= −: ()∆
 , d a b− − += −: ()∆ d a b+ + −= ∇ −: ()
 calculate the width of w1 [,]c c− +

 calculate the width of w2 [,]d d− +

 if w w1 2≥
 then A B c c− = − +: [,]
 else A B d d− = − +: [,]
 end

The multiplication is more complicated. We have:

if and (proper intervals)a a− +≤ b b− +≤
 then A B a b a b a b a b

a b a b a b a b
× = ∇ ∇ ∇ ∇− − − + + − + +

− − − + + − + +
[min{ (), (), (), ()},
max{ (), (), (), ()}]∆ ∆ ∆ ∆

 else if ()a a a a− + − +< < > >0 0 0 0and or and
 and ()b b b b− + − +< < > >0 0 0 0and or and
 then if a a b b− + − +> > > >0 0 0 0and and and
 then begin
 , c a b− − −= ∇: () c a b+ + +=: ()∆
 , d a b− − −=: ()∆ d a b+ + += ∇: ()
 calculate A B×
 end
 else if a a b b− + − +> > < <0 0 0 0and and and
 then begin
 , c a b− + −= ∇: () c a b+ − +=: ()∆
 , d a b− + −=: ()∆ d a b+ − += ∇: ()
 calculate A B×
 end
 else if a a b b− + − +< < > >0 0 0 0and and and
 then begin
 , c a b− − += ∇: () c a b+ + −=: ()∆
 , d a b− − +=: ()∆ d a b+ + −= ∇: ()

A. Marciniak, On realization of floating-point directed interval arithmetic 6

 calculate A B×
 end
 else begin
 , c a b− + += ∇: () c a b+ − −=: ()∆
 , d a b− + +=: ()∆ d a b+ − −= ∇: ()
 calculate A B×
 end
 else if ()a a a a− + − +< < > >0 0 0 0and or and
 and ()b b b b− + − +≤ ≥ ≥ ≤0 0 0 0and or and
 then if a a b b− + − +> > ≤0 0and and
 then begin
 , c a b− + −= ∇: () c a b+ + +=: ()∆
 , d a b− + −=: ()∆ d a b+ + += ∇: ()
 calculate A B×
 end
 else if a a b b− + − +> > >0 0and and
 then begin
 , c a b− − −= ∇: () c a b+ − +=: ()∆
 , d a b− − −=: ()∆ d a b+ − += ∇: ()
 calculate A B×
 end
 else if a a b b− + − +< < ≤0 0and and
 then begin
 , c a b− − += ∇: () c a b+ − −=: ()∆
 , d a b− − +=: ()∆ d a b+ − −= ∇: ()
 calculate A B×
 end
 else begin
 , c a b− + += ∇: () c a b+ + −=: ()∆
 , d a b− + +=: ()∆ d a b+ + −= ∇: ()
 calculate A B×
 end
 else if ()a a a a− + − +≤ ≥ ≥ ≤0 0 0 0and or and
 and ()b b b b− + − +< < > >0 0 0 0and or and
 then if a a b b− + − +≤ > >and and0 0
 then begin
 , c a b− − += ∇: () c a b+ + +=: ()∆
 , d a b− − +=: ()∆ d a b+ + += ∇: ()
 calculate A B×
 end
 else if a a b b− + − +≤ < <and and0 0
 then begin
 , c a b− + −= ∇: () c a b+ − −=: ()∆

A. Marciniak, On realization of floating-point directed interval arithmetic 7

 , d a b− + −=: ()∆ d a b+ − −= ∇: ()
 calculate A B×
 end
 else if a a b b− + − +> > >and and0 0
 then begin
 , c a b− − −= ∇: () c a b+ + −=: ()∆
 , d a b− − −=: ()∆ d a b+ + −= ∇: ()
 calculate A B×
 end
 else begin
 , c a b− + += ∇: () c a b+ − +=: ()∆
 , d a b− + +=: ()∆ d a b+ − += ∇: ()
 calculate A B×
 end
 else if a a b b− + − +≥ ≤ ≥ ≤0 0 0 0and and and
 then begin
 , c a b1

− − −= ∇: () c a b2
− + += ∇: ()

 if c c1 2
− −≤

 then c c− −=: 2
 else c c− −=: 1
 , c a b1

+ − +=: ()∆ c a b2
+ + −=: ()∆

 if c c1 2
+ +≤

 then c c+ +=: 1
 else c c+ +=: 2
 , d a b1

− − −=: ()∆ d a b2
− + +=: ()∆

 if d d1 2
− −≤

 then d d− −=: 2
 else d d− −=: 1
 , d a b1

+ − += ∇: () d a b2
+ + −= ∇: ()

 if d d1 2
+ +≤

 then d d+ +=: 1
 else d d+ +=: 2
 calculate A B×
 end
 else A B× =: [,]0 0

where the expression “calculate ” means a function which can be described as follows:A B×

calculate the width of w1 [,]c c− +

calculate the width of w2 [,]d d− +

if w w1 2≥
 then A B c c× = − +: [,]
 else A B d d× = − +: [,]

Finally, for the division we have:

A. Marciniak, On realization of floating-point directed interval arithmetic 8

if (proper intervals)a a b b− + − +≤ ≤and
 then A B a b a b a b a b

a b a b a b a b
/ : [min{ (/), (/), (/), (/)},

max{ (/), (/), (/), (/)}]
= ∇ ∇ ∇ ∇− − − + + − + +

− − − + + − + +∆ ∆ ∆ ∆

 else if ()a a a a− + − +< < > >0 0 0 0and or and
 and ()b b b b− + − +< < > >0 0 0 0and or and
 then if a a b b− + − +> > > >0 0 0 0and and and
 then begin
 , c a b− − += ∇: (/) c a b+ + −=: (/)∆
 , d a b− − +=: (/)∆ d a b+ + −= ∇: (/)
 calculate A B/
 end
 else if a a b b− + − +> > < <0 0 0 0and and and
 then begin
 , c a b− + += ∇: (/) c a b+ − −=: (/)∆
 , d a b− + +=: (/)∆ d a b+ − −= ∇: (/)
 calculate A B/
 end
 else if a a b b− + − +< < > >0 0 0 0and and and
 then begin
 , c a b− − −= ∇: (/) c a b+ + +=: (/)∆
 , d a b− − −=: (/)∆ d a b+ + += ∇: (/)
 calculate A B/
 end
 else begin
 , c a b− + −= ∇: (/) c a b+ − +=: (/)∆
 , d a b− + −=: (/)∆ d a b+ − += ∇: (/)
 calculate A B/
 end
 else if ()a a a a− + − +≤ ≥ ≥ ≤0 0 0 0and or and
 and ()b b b b− + − +< < > >0 0 0 0and or and
 then if a a b b− + − +≤ > >and and0 0
 then begin
 , c a b− − −= ∇: (/) c a b+ + −=: (/)∆
 , d a b− − −=: (/)∆ d a b+ + −= ∇: (/)
 calculate A B/
 end
 else if a a b b− + − +≤ < <and and0 0
 then begin
 , c a b− + += ∇: (/) c a b+ − +=: (/)∆
 , d a b− + +=: (/)∆ d a b+ − += ∇: (/)
 calculate A B/
 end
 else if a a b b− + − +> > >and and0 0

A. Marciniak, On realization of floating-point directed interval arithmetic 9

 then begin
 , c a b− − += ∇: (/) c a b+ + +=: (/)∆
 , d a b− − +=: (/)∆ d a b+ + += ∇: (/)
 calculate A B/
 end
 else begin
 , c a b− + −= ∇: (/) c a b+ − −=: (/)∆
 , d a b− + −=: (/)∆ d a b+ − −= ∇: (/)
 calculate A B/
 end
 else error “division by interval containing zero”

where “calculate ” stands for a function described as follows:A B/

calculate the width of w1 [,]c c− +

calculate the width of w2 [,]d d− +

if w w1 2≥
 then A B c c/ : [,]= − +

 else A B d d/ : [,]= − +

All the above operations have been implemented in our IntervalArithmetic unit written in the Delphi Pascal
programming language. This unit, still developed, can be loaded from [1].

References

[1] Delphi Pascal IntervalArithmetic unit, http://www.cs.put.poznan.pl/amarciniak/DEL-wyklady/Interval-
Arithmetic.pas.

[2] Hammer, R., Hocks, M., Kulisch, U., Ratz, D., Numerical Toolbox for Verified Computing I: Basic
Numerical Problems, Springer, Berlin 1993.

[3] Jaulin, L., Kieffer, M., Didrit, O., Walter, É., Applied Interval Analysis, Springer-Verlag, London 2001.
[4] Klatte, R., Kulisch, U., Lawo, C., Rauch, M., Wiethoff, A., C–XSC. A C++ Class Library for Extended

Scientific Computing, Springer-Verlag, Berlin 1993.
[5] Klatte, R., Kulisch, U., Neaga, M., Ratz, D., Ullrich, Ch., PASCAL–XSC. Language Reference with

Examples, Springer-Verlag, Berlin 1992.
[6] Marciniak, A., Selected Interval Methods for Solving the Initial Value Problem, Publishing House of

Poznan University of Technology, Poznan 2009.
[7] Markov, S., On Directed Interval Arithmetic and its Applications, Journal of Universal Computer

Science 7 (1995), 514–526.
[8] Moore, R. E., Kearfott, R. B., Cloud, M. J., Introduction to Interval Analysis, SIAM, Philadelphia 2009.
[9] Popova, E. D., Extended Interval Arithmetic in IEEE Floating-Point Environment, Interval Computations

4 (1994), 100–129.
[10] Shokin, J. I., Interval Analysis [in Russian], Nauka, Novosibirsk 1982.

