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Planned schedule

I 14:00 – 15:30 Introduction, Semantic Data Mining Tasks and Pecularities
I Introduction (20 min.)
I Basics of semantic data mining (20 min.)
I Tasks of semantic data mining (20 min.)
I Pecularities of semantic data mining (30 min.)

I 15:30 – 16:00 Coffee break
I 16:00 – 18:00 Semantic Data Mining for Knowledge Acquisition,

Hands-On
I Semantic data mining for knowledge acquisition (60 min.)
I Hands-on: LeoLOD Swift Linked Data Miner plugin for Protégé (60 min.)



Knowledge graph

Definition

Knowledge graphs (KGs) are large, graph-structured knowledge bases
which represent facts in the form of relationships between entities.

I The basic building blocks of a knowledge graph are:
I entities, expressed via the nodes in a graph,
I their properties (attributes), and relations connecting the nodes, expressed

via the edges in the graph

I the entities may be (semantically) typed what is represented by the is-a
relation between an entity and its type.

I some types, properties and relations smay be stored in a knowledge
graph in a structured form of an ontology or a schema (TBox)

I knowledge graphs are concentrated on instance data (ABox) and the
number of instances in a typical knowledge graph is huge



Knowledge graph: example



Statistical schema induction

Völker, Niepert (2011)



Statistical schema induction: Terminology acquisition

Völker, Niepert (2011)

I Select candidates for atomic classes, properties, individuals

I Assign identifiers to class and property expressions

SELECT DISTINCT ?x WHERE {
?y rdf:type ?x
}

SELECT DISTINCT ?x WHERE {
?y ?x ?z .
?z rdf:type ?zt
}



Statistical schema induction: Association rule mining

Völker, Niepert (2011)

1146 6330 3961 64
3235 3788 2 66 64
3235 3788 2 66 364 17
1146 6330 64
1146 3788 64

64 = Person
1146 = ∃ birthPlace.PopulatedPlace

{1146}→ {64}

∃ birthPlace.PopulatedPlace v Person



Statistical schema induction: Ontology construction

Völker, Niepert (2011)

Axiom Type Association Rule
C v D {Ci} → {Cj}
C uD v E {Ci, Cj} → {Ck}
D v ∃r.C {Ci} → {∃rj .Cjk}
∃r.C v D {∃rj .Cjk} → {Ci}
∃r.> v C {∃rj .>} → {Ci}
∃r−1.> v C {∃r−1j .>} → {Ci}
r v s {ri} → {rj}



Learning class disjointness

Völker, Fleischhacker, Stuckenschmidt (OTM 2011, JWS 2015)

I negative association rules A→ ¬B
I additional concepts that represent the complements of each concept

included into transaction tables

I if the corresponding SPARQL query detects an instance not belonging to
a concept A the membership in the complement concept (¬A) is
recorded in the transaction table



Mining Substitutive Properties: Motivating scenario 1/3
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Mining Substitutive Properties: Motivating scenario 2/3

I DBpedia 2014 ontology has 1310 object and 1725 data properties

I Many large Linked Data use relatively lightweight schemas with a high
number of object properties



Mining Substitutive Properties: Motivating scenario 3/3
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Mining Substitutive Properties: Substitutive Sets Mining
Framework

Frequent(
Itemset(Mining(

Subs1tu1ve(Set(
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Mining Substitutive Properties: Frequent Itemsets

I I = {i1, i2, . . . , im} - a set of items

I DT = {t1, t2, . . . , tn}, where ∀i ti ⊆ I -a database of transactions

I support(X) = |{t∈DT :X⊆t}|
|DT |

ID Items
1 Nachos, Pepsi, Salsa
2 Nachos, Coca-Cola, Salsa
3 Nachos, Coca-Cola
4 Nachos, Pepsi, Salsa
5 Milk, Bread

Frequent Itemset Support
{Nachos} 80%
{Salsa} 60%
{Coca-Cola} 40%
{Pepsi} 40%
{Nachos, Salsa} 60%
{Nachos, Coca-Cola} 40%
{Nachos, Pepsi} 40%
{Salsa, Pepsi} 40%



Mining Substitutive Properties: Covering Set

I CS (i|L) = {X ∈ L : {i} ∪X ∈ L}
I coverage(i|L) = |CS (i|L)|

Frequent Itemset
{Nachos}
{Salsa}
{Coca-Cola}
{Pepsi}
{Nachos, Salsa}
{Nachos, Coca-Cola}
{Nachos, Pepsi}
{Salsa, Pepsi}

i CS(i) coverage
{Nachos} {{Salsa}, {Coca-Cola}, {Pepsi}} 3
{Salsa} {{Nachos}} 1
{Coca-Cola} {{Nachos}} 1
{Pepsi} {{Nachos}, {Salsa}} 2



Mining Substitutive Properties: Substitutive Sets

A two-element itemset {x, y} is a substitutive itemset, if:

I x ∈ L1,

I y ∈ L1,

I support({x} ∪ {y}) < ε, where ε is a user-defined threshold
representing the highest amount of noise in the data allowed,

I |CS(x|L)∩CS(y|L)|
max{|CS |L(x)|,|CS(y|L)|} > mincommon .

i CS(i) coverage
{Nachos} {{Salsa}, {Coca-Cola}, {Pepsi}} 3
{Salsa} {{Nachos}} 1
{Coca-Cola} {{Nachos}} 1
{Pepsi} {{Nachos}, {Salsa}} 2

|CS(Pepsi)∩CS(Coca−Cola)|
max{|CS(Pepsi)|,|CS(Coca−Cola)|} = 0.5



Mining Substitutive Properties: Use Case - DBpedia
I DBpedia knowledge base version 2014
I sets of 3–item transactions {c1, p, c2}, where c1 and c2 classes of

subject and object of RDF triple, and p property connecting s and o

SELECT ?c1 ?p ?c2
WHERE {
?s rdf:type dbpedia-owl:Organization .
?s ?p ?o .
?s rdf:type ?c1 .
?o rdf:type ?c2 .
FILTER(?p != dbpedia-owl:wikiPageWikiLink) .
FILTER(?p != rdf:type) .
FILTER(?p != dbpedia-owl:wikiPageExternalLink) .
FILTER(?p != dbpedia-owl:wikiPageID) .
FILTER(?p != dbpedia-owl:wikiPageInterLanguageLink) .
FILTER(?p != dbpedia-owl:wikiPageLength) .
FILTER(?p != dbpedia-owl:wikiPageOutDegree) .
FILTER(?p != dbpedia-owl:wikiPageRedirects) .
FILTER(?p != dbpedia-owl:wikiPageRevisionID)
}



Mining Substitutive Properties: Transaction generation

dbpedia'owl:MusicalAr2st44 dbpedia'owl:PopulatedPlace44

Norah_Jones4
4

Denton,_Texas4
dbpedia'prop:origin4

Mark_Knopfler4 Gosforth4
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dbpedia'owl:MusicalAr2st44 dbpedia'owl:PopulatedPlace44

s4

s4 p4

p4 o4
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c14
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c24
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Transactions
{c1_dbpedia-owl:MusicalArtist, dbpedia-owl:hometown, c2_dbpedia-owl:PopulatedPlace }
{c1_dbpedia-owl:MusicalArtist, dbpedia-prop:origin , c2_dbpedia-owl:PopulatedPlace }
...



Mining Substitutive Properties: Sample substitutive
properties for the class Organisation

Item X Item Y Common
dbpprop:parentOrganization dbo:parentOrganisation 1.000
dbpprop:owner dbo:owner 1.000
dbpprop:origin dbo:hometown 1.000
dbpprop:headquarters dbpprop:parentOrganization 1.000
dbpprop:formerAffiliations dbo:formerBroadcastNetwork 1.000
dbo:product dbpprop:products 1.000
dbpprop:keyPeople dbo:keyPerson 0.910
dbpprop:commandStructure dbpprop:branch 0.857
dbo:schoolPatron dbo:foundedBy 0.835
dbpprop:notableCommanders dbo:notableCommander 0.824
dbo:recordLabel dbpprop:label 0.803
dbo:headquarter dbo:locationCountry 0.803
dbpprop:country dbo:state 0.753



Learning Types from RDF Data

SDType (Paulheim ISWC2013)

I Basic idea: incoming/outgoing properties as indicators for a resource
type, e.g. starring→ Movie

I Basic compiled statistics:
I P(C|p) = probability of class C in the presence of property p
I e.g.: P(dbpedia:film|starring)=0.79



Learning Types from RDF Data

SDType (Paulheim ISWC2013)

I Using compiled statistics:
I find instance types
I use voting

I score (c): avg(all properties p) P(C|p)

I refine with weights for properties



Embeddings

I Embeddings are modeling and feature learning techniques where words,
phrases, entities or concepts from some vocabulary are mapped to
dense vectors of real numbers.

I It consists of mathematical embedding from a space with one dimension
per word/phrase/entity/concept to a low-dimensional and continuous
vector space where co-occurring words/phrases/entities/concepts are
located close to each other.

I Methods to generate such mapping: neural networks, dimensionality
reduction on the word/phrase/entity/concept co-occurrence matrix,
probabilistic models, others.



Vector space models

Represent an entity as a vector of numbers

banana	 1	 0	 0	 0	 2	 0	 1	 0	 1	 0	 0	 0	



World analogy

man is to woman as king is to ___?
USA is to Washington as Poland is to ___?

[king]-[man]+[woman]≈[queen]



Learning dense embeddings: Matrix factorization

Factorizing word-context matrix, e.g. GloVe (Pennington et al., EMNLP
2014)

Context	1	 Context	2	 …	 Context	k	

Word	1	

Word	2	

…	

Word	n	



Learning dense embeddings: Neural networks

Shallow, two-layer neural networks, trained to reconstruct contexts of words
with word and context as both input and output, e.g. Word2vec (Mikolov et
al. NIPS 2013)



Knowledge graph embeddings

I represent entities or concepts of the graphs as vectors

I relations among entities or concepts are represented with various forms
of vector calculation bound with specific relational semantics

I two major families: translation-based and non-translation-based
embeddings



Translation-based Models

I Triple represented as: (h, r, t):
I h: head entity
I r: relation
I t: tail entity

I h and t represented as two k-dimensional vectors h and t
I score function fr(h, t) used to measure the plausibility of (h, r, t),

involves the transformation r characterizing r

Construct embeddings by treating relation r as translation from head entity
h to tail entity t



Translation-based Models

TransE (Bordes et al., NIPS 2013)

I 1-1 relations of entities

I predicting a missing item in a triple or verifying the validity of a generated
triple



Translation-based Models

TransH (Wang et al., AAAI 2014)

I projections on relation-specific hyperplanes

I knowledge graph completion and link prediction



Translation-based Models

TransR (Lin et al., AAAI 2015)

I linear transformations to heterogeneous relation spaces

I knowledge graph completion and link prediction



Non-Translation-Based Models

I NTN (Socher et al. NIPS 2013): reasoning with neural networks to learn
structured data for knowledge base completion

I TADW (text-associated DeepWalk) (Yang et al. IJCAI 2015): using
random walk on graphs to incorporate text features of vertices into
network representation learning



RDF2Vec: RDF Graph Embeddings

Ristoski & Paulheim (ISWC 2016)

I adaptation of neural language models (Word2vec)

I converting RDF graphs in sequences of entities and relations to form
sentences (graph walks, graph kernels)

I training neural language model



Graph Walks: RDF2vec

Ristoski & Paulheim (ISWC 2016)
For each entity in the graph:

I extract a subgraph with depth d

I extract walks on the subgraph

I build word2vec model



SLDM algorithm

Swift Linked Data Miner (Potoniec, Lawrynowicz et. al, JWS 46, 2017)

I discovers new partial definitions, i.e. SubClassOf axioms, for a given
class

I an anytime algorithm: it delivers patterns once they are mined, then
refines them
I the longer the algorithm works, the more complex patterns are mined

I does not require an access to the whole RDF graph at the same time
I it downloads on-demand necessary parts by querying the SPARQL endpoint

with very simple queries, consisting only of a single triple pattern and a
VALUES clause



SLDM - how it works

Swift Linked Data Miner (Potoniec, Lawrynowicz et. al, JWS 46, 2017)

I SLDM constructs a set of URIs belonging to the selected class, by
posing a SPARQL query, e.g.: ?x rdf:type Astronaut

I Then operates in two alternating phases:
1. querying the endpoint, about all the triples having an URI from the set in a

subject position, by using WHERE clause:
?s ?p ?o . VALUES ?s {«URIs»} .
I the triples are then organized into a three-level index, with predicates in the fi

rst level, objects in the second and subjects in the third

2. mining the obtained triples by scanning the index to discover the axioms,
e.g. if for predicate rdf:type and object Person there are many subjects in the
third level, an axiom Astronaut subClassOf Person is mined.
I if, for a given predicate, no pattern can be found, the corresponding subjects are

used as an input to the first phase of SLDM, to mine more complex axioms



SLDM - three-level index
Swift Linked Data Miner (Potoniec, Lawrynowicz et. al, JWS 46, 2017)

Figure: A sample three level index used in SLDM. The first level consists of
predicates, the second level of objects and the third of subjects. Empty rectangles
denote pointers to the next level. There are 11 triples in this index: 6 with predicate
p0, 4 with predicate p1 and 1 with predicate p2, namely (s10, p2, o5).



A typical workflow with the SLDM plugin
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