











Seventh Edition

ABRAHAM SILBERSCHATZ

Yale University

PETER BAER GALVIN

Corporate Technologies, Inc.

GREG GAGNE

Westminster College

WILEY
JOHN WILEY & SONS. INC



EXECUTIVE EDITOR Bill Zobrist

SENIOR PRODUCTION EDITOR Ken Santor
COVER DESIGNER Madelyn Lesure
COVER ILLUSTRATION Susan St. Cyr
TEXT DESIGNER Judy Allan

This book was set in Palatino by the author using LaTeX and printed and bound by
Von Hoffmann, Inc. The cover was printed by Von Hoffmann, Inc.

This book is printed on acid free paper. ©

Copyright © 2005 John Wiley & Sons, Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording, scanning
or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States
Copyright Act, without either the prior written permission of the Publisher, or
authorization through payment of the appropriate per-copy fee to the Copyright
Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax

(978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030,
(201) 748-6011, fax (201) 748-6008.

To order books or for customer service please, call 1(800)-CALL-WILEY (225-5945).

ISBN 0-471-69466-5
Printed in the United States of America

10987654321



To my children, Lemor, Sivan, and Aaron

Avi Silberschatz

To my wife, Carla,
and my children, Gwen Owen and Maddie

Peter Baer Galvin

In memory of Uncle Sonny,
Robert Jon Heileman 1933 — 2004

Greg Gagne






Preface

Operating systems are an essential part of any computer system. Similarly,
a course on operating systems is an essential part of any computer-science
education. This field is undergoing rapid change, as computers are now
prevalent in virtually every application, from games for children through the
most sophisticated planning tools for governments and multinational firms.
Yet the fundamental concepts remain fairly clear, and it is on these that we base
this book.

We wrote this book as a text for an introductory course in operating systems
at the junior or senior undergraduate level or at the first-year graduate level.
We hope that practitioners will also find it useful. It provides a clear description
of the concepts that underlie operating systems. As prerequisites, we assume
that the reader is familiar with basic data structures, computer organization,
and a high-level language, such as C. The hardware topics required for an
understanding of operating systems are included in Chapter 1. For code
examples, we use predominantly C, with some Java, but the reader can still
understand the algorithms without a thorough knowledge of these languages.

Concepts are presented using intuitive descriptions. Important theoretical
results are covered, but formal proofs are omitted. The bibliographical notes
contain pointers to research papers in which results were first presented and
proved, as well as references to material for further reading. In place of proofs,
figures and examples are used to suggest why we should expect the result in
question to be true.

The fundamental concepts and algorithms covered in the book are often
based on those used in existing commercial operating systems. Our aim
is to present these concepts and algorithms in a general setting that is
not tied to one particular operating system. We present a large number of
examples that pertain to the most popular and the most innovative operating
systems, including Sun Microsystems’ Solaris; Linux; Mach; Microsoft MS-DOS,
Windows NT, Windows 2000, and Windows XP; DEC VMS and TOPS-20; IBM OS/2;
and Apple Mac 05 X.

In this text, when we refer to Windows XP as an example operating system,
we are implying both Windows XP and Windows 2000. If a feature exists in
Windows XP that is not available in Windows 2000, we will state this explicitly.
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If a feature exists in Windows 2000 but not in Windows XP, then we will refer
specifically to Windows 2000.

Organization of This Book

The organization of this text reflects our many years of teaching operating
systems courses. Consideration was also given to the feedback provided by
the reviewers of the text, as well as comments submitted by readers of earlier
editions. In addition, the content of the text corresponds to the suggestions
from Computing Curricula 2001 for teaching operating systems, published by
the Joint Task Force of the IEEE Computing Society and the Association for
Computing Machinery (ACM).

On the supporting web page for this text, we provide several sample syllabi
that suggest various approaches for using the text in both introductory and
advanced operating systems courses. As a general rule, we encourage readers
to progress sequentially through the chapters, as this strategy provides the
most thorough study of operating systems. However, by using the sample
syllabi, a reader can select a different ordering of chapters (or subsections of
chapters).

Content of This Book

The text is organized in eight major parts:

e Overview. Chapters 1 and 2 explain what operating systems are, what
they do, and how they are designed and constructed. They discuss what the
common features of an operating system are, what an operating system
does for the user, and what it does for the computer-system operator. The
presentation is motivational and explanatory in nature. We have avoided a
discussion of how things are done internally in these chapters. Therefore,
they are suitable for individual readers or for students in lower-level classes
who want to learn what an operating system is without getting into the
details of the internal algorithms.

® Process management. Chapters 3 through 7 describe the process concept
and concurrency as the heart of modern operating systems. A process
is the unit of work in a system. Such a system consists of a collection
of concurrently executing processes, some of which are operating-system
processes (those that execute system code) and the rest of which are user
processes (those that execute user code). These chapters cover methods for
process scheduling, interprocess communication, process synchronization,
and deadlock handling. Also included under this topic is a discussion of
threads.

e Memory management. Chapters 8 and 9 deal with main memory man- -
agement during the execution of a process. To improve both the utilization
of the CPU and the speed of its response to its users, the computer must
keep several processes in memory. There are many different memory-
management schemes, reflecting various approaches to memory man-
agement, and the effectiveness of a particular algorithm depends on the
situation.
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Storage management. Chapters 10 through 13 describe how the file system,
mass storage, and 1/0 are handled in a modern computer system. The
file system provides the mechanism for on-line storage of and access to
both data and programs residing on the disks. These chapters describe
the classic internal algorithms and structures of storage management.
They provide a firm practical understanding of the algorithms used—
the properties, advantages, and disadvantages. Since the 1/0 devices that
attach to a computer vary widely, the operating system needs to provide °
a wide range of functionality to applications to allow them to control all
aspects of the devices. We discuss system /0 in depth, including 1/0
system design, interfaces, and internal system structures and functions.
In many ways, I/O devices are also the slowest major components of
the computer. Because they are a performance bottleneck, performance
issues are examined. Matters related to secondary and tertiary storage are
explained as well.

Protection and security. Chapters 14 and 15 discuss the processes in an
operating system that must be protected from one another’s activities.
For the purposes of protection and security, we use mechanisms that
ensure that only processes that have gained proper authorization from
the operating system can operate on the files, memory, CPU, and other
resources. Protection is a mechanism for controlling the access of programs,
processes, or users to the resources defined by a computer system. This
mechanism must provide a means of specifying the controls to be imposed,
as well as a means of enforcement. Security protects the information stored
in the system (both data and code), as well as the physical resources of
the computer system, from unauthorized access, malicious destruction or
alteration, and accidental introduction of inconsistency.

Distributed systems. Chapters 16 through 18 deal with a collection of
processors that do not share memory or a clock—a distributed system. By
providing the user with access to the various resources that it maintains, a
distributed system can improve computation speed and data availability
and reliability. Such a system also provides the user with a distributed file
system, which is a file-service system whose users, servers, and storage
devices are dispersed among the sites of a distributed system. A distributed
system must provide various mechanisms for process synchronization and
communication and for dealing with the deadlock problem and a variety
of failures that are not encountered in a centralized system.

Special-purpose systems. Chapters 19 and 20 deal with systems used for
specific purposes, including real-time systems and multimedia systems.
These systems have specific requirements that differ from those of the
general-purpose systems that are the focus of the remainder of the text.
Real-time systems may require not only that computed results be “correct”
but also that the results be produced within a specified deadline period.
Multimedia systems require quality-of-service guarantees ensuring that
the multimedia data are delivered to clients within a specific time frame.

Case studies. Chapters 21 through 23 in the book, and Appendices A
through C on the website, integrate the concepts described in this book by
describing real operating systems. These systems include Linux, Windows
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XP, FreeBSD, Mach, and Windows 2000. We chose Linux and FreeBSD
because UNIX—at one time—was almost small enough to understand
yet was not a “toy” operating system. Most of its internal algorithms were
selected for simplicity, rather than for speed or sophistication. Both Linux
and FreeBSD are readily available to computer-science departments, so
many students have access to these systems. We chose Windows XP and
Windows 2000 because they provide an opportunity for us to study a |
modern operating system with a design and implementation drastically
different from those of UNIX. Chapter 23 briefly describes a few other
influential operating systems.

Operating-System Environments

This book uses examples of many real-world operating systems to illustrate
fundamental operating-system concepts. However, particular attention is paid
to the Microsoft family of operating systems (including Windows NT, Windows
2000, and Windows XP) and various versions of UNIX (including Solaris, BSD,
and Mac OS X). We also provide a significant amount of coverage of the Linux
operating system reflecting the most recent version of the kernel — Version 2.6
—at the time this book was written.

The text also provides several example programs written in C and

Java. These programs are intended to run in the following programming
environments:

¢ Windows systems. The primary programming environment for Windows

systems is the Win32 API (application programming interface), which pro-
vides a comprehensive set of functions for managing processes, threads,
memory, and peripheral devices. We provide several C programs illustrat-
ing the use of the Win32 API. Example programs were tested on systems
running Windows 2000 and Windows XP.

POSIX. POSIX (which stands for Portable Operating System Interface) repre-
sents a set of standards implemented primarily for UNIX-based operating
systems. Although Windows XP and Windows 2000 systems can also run
certain POSIX programs, our coverage of POSIX focuses primarily on UNIX
and Linux systems. POSIX-compliant systems must implement the POSIX
core standard (POSIX.1)—Linux, Solaris, and Mac OS X are examples of
POSIX-compliant systems. POSIX also defines several extensions to the
standards, including real-time extensions (POSIX1.b) and an extension for
a threads library (POSIX1.c, better known as Pthreads). We provide several
programming examples written in C illustrating the POSIX base API, as well
as Pthreads and the extensions for real-time programming. These example
programs were tested on Debian Linux 2.4 and 2.6 systems, Mac OS X, and
Solaris 9 using the gcc 3.3 compiler.

e Java. Java is a widely used programming language with a rich API and

built-in language support for thread creation and management. Java
programs run on any operating system supporting a Java virtual machine
(or JVM). We illustrate various operating system and networking concepts
with several Java programs tested using the Java 1.4 JVM.
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We have chosen these three programming environments because it,is our
opinion that they best represent the two most popular models of operating
systems: Windows and UNIX/Linux, along with the widely used Java environ-
ment. Most programming examples are written in C, and we expect readers to
be comfortable with this language; readers familiar with both the C and Java
languages should easily understand most programs provided in this text.

In some instances—such as thread creation—we illustrate a specific
concept using all three programming environments, allowing the reader "
to contrast the three different libraries as they address the same task. In
other situations, we may use just one of the APIs to demonstrate a concept.
For example, we illustrate shared memory using just the POSIX API; socket
programming in TCP/IP is highlighted using the Java APL

The Seventh Edition

As we wrote this seventh edition of Operating System Concepts, we were guided
by the many comments and suggestions we received from readers of our
previous editions, as well as by our own observations about the rapidly
changing fields of operating systems and networking. We have rewritten the
material in most of the chapters by bringing older material up to date and
removing material that was no longer of interest or relevance.

We have made substantive revisions and organizational changes in many of
the chapters. Most importantly, we have completely reorganized the overview
material in Chapters 1 and 2 and have added two new chapters on special-
purpose systems (real-time embedded systems and multimedia systems).
Because protection and security have become more prevalent in operating
systems, we now cover these topics earlier in the text. Moreover, we have
substantially updated and expanded the coverage of security.

Below, we provide a brief outline of the major changes to the various
chapters:

e Chapter 1, Introduction, has been totally revised. In previous editions, the
chapter gave a historical view of the development of operating systems.
The new chapter provides a grand tour of the major operating-system
components, along with basic coverage of computer-system organization.

® Chapter 2, Operating-System Structures, is a revised version of old
Chapter 3, with many additions, including enhanced discussions of system
calls and operating-system structure. It also provides significantly updated
coverage of virtual machines.

e Chapter 3, Processes, is the old Chapter 4. It includes new coverage of how
processes are represented in Linux and illustrates process creation using
both the POSIX and Win32 APIs. Coverage of shared memory is enhanced
with a program illustrating the shared-memory API available for POSIX
systems.

e Chapter4, Threads, is the old Chapter 5. The chapter presents an enhanced
discussion of thread libraries, including the POSIX, Win32 APl, and Java
thread libraries. It also provides updated coverage of threading in Linux.
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Chapter 5, CPU Scheduling, is the old Chapter 6. The chapter offers a
significantly updated discussion of scheduling issues for multiprocessor
systems, including processor affinity and load-balancing algorithms. It
also features a new section on thread scheduling, including Pthreads, and
updated coverage of table-driven scheduling in Solaris. The section on
Linux scheduling has been revised to cover the scheduler used in the 2.6
kernel.

Chapter 6, Process Synchronization, is the old Chapter 7. We have
removed the coverage of two-process solutions and now discuss only
Peterson’s solution, as the two-process algorithms are not guaranteed to
work on modern processors. The chapter also includes new sections on
synchronization in the Linux kernel and in the Pthreads APL

Chapter 7, Deadlocks, is the old Chapter 8. New coverage includes
a program example illustrating deadlock in a multithreaded Pthread
program.

Chapter 8, Main Memory, is the old Chapter 9. The chapter no longer
covers overlays. In addition, the coverage of segmentation has seen sig-
nificant modification, including an enhanced discussion of segmentation
in Pentium systems and a discussion of how Linux is designed for such
segmented systems.

Chapter 9, Virtual Memory, is the old Chapter 10. The chapter features
expanded coverage of motivating virtual memory as well as coverage
of memory-mapped files, including a programming example illustrating
shared memory (via memory-mapped files) using the Win32 APL. The
details of memory management hardware have been modernized. A new
section on allocating memory within the kernel discusses the buddy
algorithm and the slab allocator.

Chapter 10, File-System Interface, is the old Chapter 11. It has been
updated and an example of Windows XP ACLs has been added.

Chapter11, File-System Implementation, is the old Chapter 12. Additions
include a full description of the WAFL file system and inclusion of Sun’s
ZFs file system.

Chapter 12, Mass-Storage Structure, is the old Chapter 14. New is the
coverage of modern storage arrays, including new RAID technology and
features such as thin provisioning.

Chapter 13, I/0 Systems, is the old Chapter 13 updated with coverage of
new material.

Chapter 14, Protection, is the old Chapter 18 updated with coverage of the
principle of least privilege.

Chapter 15, Security, is the old Chapter 19. The chapter has undergone -
a major overhaul, with all sections updated. A full example of a buffer-
overflow exploit is included, and coverage of threats, encryption, and
security tools has been expanded.

Chapters 16 through 18 are the old Chapters 15 through 17, updated with
coverage of new material.
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e Chapter 19, Real-Time Systems, is a new chapter focusing on real-time
and embedded computing systems, which have requirements different
from those of many traditional systems. The chapter provides an overview
of real-time computer systems and describes how operating systems must
be constructed to meet the stringent timing deadlines of these systems.

e Chapter 20, Multimedia Systems, is anew chapter detailing developments
in the relatively new area of multimedia systems. Multimedia data differ .
from conventional data in that multimedia data—such as frames of video
—must be delivered (streamed) according to certain time restrictions. The
chapter explores how these requirements affect the design of operating
systems.

e Chapter 21, The Linux System, is the old Chapter 20, updated to reflect
changes in the 2.6 kernel—the most recent kernel at the time this text was
written.

e Chapter 22, XP, has been updated.
e Chapter 22, Influential Operating Systems, has been updated.

The old Chapter 21 (Windows 2000) has been turned into Appendix C. As in
the previous edition, the appendices are provided online.

Programming Exercises and Projects

To emphasize the concepts presented in the text, we have added several
programming exercises and projects that use the POSIX and Win32 APlsas well
as Java. We have added over 15 new programming exercises that emphasize
processes, threads, shared memory, process synchronization, and networking.
In addition, we have added several programming projects which are more
involved than standard programming exercises. These projects include adding
a system call to the Linux kernel, creating a UNIX shell using the fork () system
call, a multithreaded matrix application, and the producer-consumer problem
using shared memory.

Teaching Supplements and Web Page

The web page for the book contains such material as a set of slides to accompany
the book, model course syllabi, all C and Java source code, and up-to-date
errata. The web page also contains the book’s three case-study appendices and
the Distributed Communication appendix. The URL is:

http:/ /www.os-book.com

New to this edition is a print supplement called the Student Solutions
Manual. Included are problems and exercises with solutions not found in
the text that should help students master the concepts presented. You can
purchase a print copy of this supplement at Wiley’s website by going to
http:/ /www.wiley.com/college/silberschatz and choosing the Student Solu-
tions Manual link.
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To obtainrestricted supplements, such as the solution guide to the exercises
in the text, contact your local John Wiley & Sons sales representative. Note that
these supplements are avaialble only to faculty who use this text. You can
find your representative at the “Find a Rep?” web page: http://www.jsw-
edcv.wiley.com/college/findarep.

Mailing List

We have switched to the mailman system for communication among the users
of Operating System Concepts. If you wish to use this facility, please visit the
following URL and follow the instructions there to subscribe:

http:/ /mailman.cs.yale.edu/mailman /listinfo / os-book-list

The mailman mailing-list system provides many benefits, such as an archive
of postings, as well as several subscription options, including digest and Web
only. To send messages to the list, send e-mail to:

os-book-list@cs.yale.edu

Depending on the message, we will either reply to you personally or forward
the message to everyone on the mailing list. The list is moderated, so you will
receive no inappropriate mail.

Students who are using this book as a text for class should not use the list
to ask for answers to the exercises. They will not be provided.

Suggestions

We have attempted to clean up every error in this new edition, but—as
happens with operating systems—a few obscure bugs may remain. We would
appreciate hearing from you about any textual errors or omissions that you
identify.

If you would like to suggest improvements or to contribute exercises,
we would also be glad to hear from you. Please send correspondence to
os-book@cs.yale.edu.
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2PC protocol, see two-phase commit
protocol

10BaseT Ethernet, 619

16-bit Windows environment, 812

32-bit Windows environment, 812-813

100BaseT Ethernet, 619

A

aborted transactions, 222
absolute code, 278
absolute path names, 390
abstract data type, 375
access:
anonymous, 398
controlled, 402-403
file, see file access
access control, in Linux, 778-779
access-control list (ACL), 403
access latency, 484
access lists (NFS V4), 656
access matrix, 538-542
and access control, 545-546
defined, 538
implementation of, 542-545
and revocation of access rights,
546-547
access rights, 534, 546-547
accounting (operating system service),
41
accreditation, 602
ACL (access-control list), 403
active array (Linux), 752

Active Directory (Windows XP), 828
active list, 685
acyclic graph, 392
acyclic-graph directories, 391-394
adaptive mutex, 218-219
additional-reference-bits algorithm, 336
additional sense code, 515
additional sense-code qualifier, 515
address(es):
defined, 501
Internet, 623
linear, 306
logical, 279
physical, 279
virtual, 279
address binding, 278-279
address resolution protocol (ARP), 636
address space:
logical vs. physical, 279-280
virtual, 317, 760-761
address-space identifiers (ASIDs),
293-294
administrative complexity, 645
admission control, 721, 729
admission-control algorithms, 704
advanced encryption standard (AES),
579
advanced technology attachment (ATA)
buses, 453
advisory file-locking mechanisms, 379
AES (advanced encryption standard),
579
affinity, processor, 170
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aging, 163-164, 636
allocation:
buddy-system, 354-355
of disk space, 421-429
contiguous allocation, 421-423
indexed allocation, 425-427
linked allocation, 423425
and performance, 427-429
equal, 341
as problem, 384
proportional, 341
slab, 355-356
analytic evaluation, 181
Andrew file system (AFS), 653-659
file operations in, 657-658
implementation of, 658-659
shared name space in, 656-657
anomaly detection, 595
anonymous access, 398
anonymous memory, 467
APCs, see asynchronous procedure calls
AP, see application program interface
Apple Computers, 42
AppleTalk protocol, 824
Application Domain, 69
application interface (I/O systems),
505-511
block and character devices, 507-508
blocking and nonblocking /0,
510-511
clocks and timers, 509-510
network devices, 508--509
application layer, 629
application programs, 4
disinfection of, 596-597
multistep processing of, 278, 279
processes vs., 21
system utilities, 55-56
application program interface (API),
4446
application proxy firewalls, 600
arbitrated loop (FC-AL), 455
architecture(s), 12-15
clustered systems, 14-15
multiprocessor systems, 12-13
single-processor systems, 12-14
of Windows XP, 787-788
architecture state, 171
archived to tape, 480

areal density, 492
argument vector, 749
armored viruses, 571
ARP (address resolution protocol), 636
arrays, 316
ASIDs, see address-space identifiers
assignment edge, 249
asymmetric clustering, 15
asymmetric encryption, 580
asymmetric multiprocessing, 13, 169
asynchronous devices, 506, 507
asynchronous (nonblocking) message
passing, 102
asynchronous procedure calls (APCs),
140-141, 790-791
asynchronous thread cancellation, 139
asynchronous writes, 434
ATA buses, 453
Atlas operating system, 845-846
atomicity, 669-672
atomic transactions, 198, 222-230
and checkpoints, 224-225
concurrent, 225-230
and locking protocols,
227-228
and serializability, 225-227
and timestamp-based
protocols, 228-230
system model for, 222-223
write-ahead logging of, 223-224
attacks, 560. See also denial-of-service
attacks
man-in-the-middle, 561
replay, 560
zero-day, 595
attributes, 815
authentication:
breaching of, 560
and encryption, 580-583
in Linux, 777
two-factor, 591
in Windows, 814
automatic job sequencing, 841
automatic variables, 566
automatic work-set trimming (Windows
XP), 363
automount feature, 645
autoprobes, 747
auxiliary rights (Hydra), 548
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back door, 507
background processes, 166
backing store, 282
backups, 436
bad blocks, 464465
bandwidth:
disk, 457
effective, 484
sustained, 484
banker’s algorithm, 259-262
base file record, 815
base register, 276, 277
basic file systems, 412
batch files, 379
batch interface, 41
Bayes’ theorem, 596
Belady’s anomaly, 332
best-fit strategy, 287
biased protocol, 674
binary semaphore, 201
binding, 278
biometrics, 591-592
bit(s):
mode, 18
modify (dirty), 329
reference, 336
valid-invalid, 295-296
bit-interleaved parity organization,
472
bit-level striping, 470
bit vector (bit map), 429
black-box transformations, 579
blade servers, 14
block(s), 47, 286, 382
bad, 464-465
boot, 71, 463—-464
boot control, 414
defined, 772
direct, 427
file-control, 413
index, 426
index to, 384
indirect, 427
logical, 454
volume control, 414
block ciphers, 579
block devices, 506508, 771-772
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block groups, 767
blocking, indefinite, 163
blocking 1/0, 510-511
blocking (synchronous) message
passing, 102
block-interleaved distributed parity,
473
block-interleaved parity organization,
472-473
block-level striping, 470
block number, relative, 383-384
boot block, 71, 414, 463464
boot control block, 414
boot disk (system disk), 72, 464
booting, 71-72, 810-811
boot partition, 464
boot sector, 464
bootstrap programs, 463-464, 573
bootstrap programs (bootstrap loaders),
6,7,71
boot viruses, 569
bottom half interrupt service routines,
755
bounded-buffer problem, 205
bounded capacity (of queue), 102
breach of availability, 560
breach of confidentiality, 560
breach of integrity, 560
broadcasting, 636, 725
B+ tree (NTEFS), 816
buddy heap (Linux), 757
buddy system (Linux), 757
buddy-system allocation, 354-355
buffer, 772
circular, 438
defined, 512
buffer cache, 433
buffering, 102, 512-514, 729
buffer-overflow attacks, 565-568
bully algorithm, 684-685
bus, 453
defined, 496
expansion, 496
PCI, 496
bus architecture, 11
bus-mastering I/O boards, 503
busy waiting, 202, 499
bytecode, 68
Byzantine generals problem, 686
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cache:
buffer, 433
defined, 514
in Linux, 758
as memory buffer, 277
nonvolatile RAM, 470
page, 433
and performance improvement, 433
and remote file access:
and consistency, 649-650
Iocation of cache, 647-648
update policy, 648, 649
slabs in, 355
unified buffer, 433, 434
in Windows XP, 806-808
cache coherency, 26
cache-consistency problem, 647
cachefs file system, 648
cache management, 24
caching, 24-26, 514
client-side, 827
double, 433
remote service vs., 650-651
write-back, 648
callbacks, 657
Cambridge CAP system, 549-550
cancellation, thread, 139
cancellation points, 139
capability(-ies), 543, 549
capability-based protection systems,
547-550
Cambridge CAP system, 549-550
Hydra, 547-549
capability lists, 543
carrier sense with multiple access
(CSMA), 627628
cascading termination, 95
CAV (constant angular velocity), 454
CD, see collision detection
central processing unit, see under CPU
certificate authorities, 584
certification, 602
challenging (passwords), 590
change journal (Windows XP), 821
character devices (Linux), 771-773
character-stream devices, 506-508
checkpoints, 225
checksum, 637

child processes, 796
children, 90
CIFS (common internet file system), 399
CineBlitz, 728-730
cipher-block chaining, 579
circuit switching, 626627
circular buffer, 438
circular SCAN (C-SCAN) scheduling
algorithm, 460
circular-wait condition (deadlocks),
254-256
claim edge, 258
classes (Java), 553
class loader, 68
CLI (command-line interface), 41
C library, 49
client(s):
defined, 642
diskless, 644
in SSL, 586
client interface, 642
client-server model, 398-399
client-side caching (CSC), 827
client systems, 31
clock, logical, 665
clock algorithm, see second-chance page-
replacement algorithm
clocks, 509-510
C-LOOK scheduling algorithm, 461
close() operation, 376
clusters, 463, 634, 815
clustered page tables, 300
clustered systems, 14-15
clustering, 634
asymmetric, 15
in Windows XP, 363
cluster remapping, 820
cluster server, 655
CLV (constant linear velocity), 454
code:
absolute, 278
reentrant, 296
code books, 591
collisions (of file names), 420
collision detection (CD), 627-628
COM, see component object model
combined scheme index block, 427
command interpreter, 4142
command-line interface (CLI), 41
commit protocol, 669



committed transactions, 222
common internet file system (CIFS), 399
communication(s):
direct, 100
in distributed operating systems,
613
indirect, 100
interprocess, see interprocess
communication
systems programs for, 55
unreliable, 686—-687
communications (operating system
service), 40
communication links, 99
communication processors, 619
communications sessions, 626
communication system calls, 54-55
compaction, 288, 422
compiler-based enforcement, 550-553
compile time, 278
complexity, administrative, 645
component object model (COM),
825-826
component units, 642
compression:
in multimedia systems, 718-720
in Windows XP, 821
compression ratio, 718
compression units, 821
computation migration, 616
computation speedup, 612
computer environments, 31-34
client-server computing, 32-33
peer-to-peer computing, 33-34
traditional, 31-32
Web-based computing, 34
computer programs, see application
programs
computer system(s):
architecture of:
clustered systems, 14-15
multiprocessor systems, 12-13
single-processor systems,
12-14
distributed systems, 28-29
file-system management in, 22-23
1/0 structure in, 10-11
memory management in, 21-22
operating system viewed by, 5
operation of, 6-8
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process management in, 20-21
protection in, 26-27
secure, 560
security in, 27
special-purpose systems, 29-31
handheld systems, 30-31
multimedia systems, 30
real-time embedded systems,
29-30
storage in, 8-10
storage management in, 22-26
caching, 24-26
1/0O systems, 26
mass-storage management,
23-24
threats to, 571-572
computing, safe, 598
concurrency control, 672-676
with locking protocols, 672-675
with timestamping, 675-676
concurrency-control algorithms, 226
conditional-wait construct, 215
confidentiality, breach of, 560
confinement problem, 541
conflicting operations, 226
conflict phase (of dispatch latency), 703
conflict resolution module (Linux),
747-748
connectionless messages, 626
connectionless (UDP) sockets, 109
connection-oriented (TCP) sockets, 109
conservative timestamp-ordering
scheme, 676
consistency, 649-650
consistency checking, 435436
consistency semantics, 401
constant angular velocity (CAV), 454
constant linear velocity (CLV), 454
container objects (Windows XP), 603
contention, 627-628
contention scope, 172
context (of process), 89
context switches, 90, 522-523
contiguous disk space allocation,
421-423
contiguous memory allocation, 285
continuous-media data, 716
control cards, 49, 842, 843
control-card interpreter, 842
controlled access, 402-403
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controller(s), 453, 496497
defined, 496
direct-memory-access, 503
disk, 453
host, 453
control programs, 5
control register, 498
convenience, 3
convoy effect, 159
cooperating processes, 96
cooperative scheduling, 156
copy-on-write technique, 325-327
copy semantics, 513
core memory, 846
counting, 431
counting-based page replacement
algorithm, 338
counting semaphore, 201
covert channels, 564
CPU (central processing unit), 4, 275-277
CPU-bound processes, 88-89
CPU burst, 154
CPU clock, 276
CPU-1/O burst cycle, 154-155
CPU scheduler, see short-term scheduler
CPU scheduling, 17
about, 153154
algorithms for, 157-169
criteria, 157-158
evaluation of, 181-185
first-come, first-served
scheduling of, 158-159
implementation of, 184-185
multilevel feedback-queue
scheduling of, 168-169
multilevel queue scheduling
of, 166~167
priority scheduling of, 162-164
round-robin scheduling of,
164-166
shortest-job-first scheduling
of, 159-162
dispatcher, role of, 157
and I/O-CPU burst cycle, 154-155
models for, 181-185
deterministic modeling,
181-182
and implementation, 184-185
queueing-network analysis, 183

simulations, 183-184 -
in multimedia systems, 722-723
multiprocessor scheduling, 169-172
approaches to, 169-170
and load balancing, 170-171
and processor affinity, 170
symmetric multithreading,
171-172
preemptive scheduling, 155-156
in real-time systems, 704-710
earliest-deadline-first
scheduling, 707
proportional share
scheduling, 708
Pthread scheduling, 708-710
rate-monotonic scheduling,
705-707
short-term scheduler, role of, 155
crackers, 560
creation:
of files, 375
process, 90-95
critical sections, 193
critical-section problem, 193-195
Peterson’s solution to, 195-197
and semaphores, 200-204
deadlocks, 204
implementation, 202-204
starvation, 204
usage, 201
and synchronization hardware,
197-200
cross-link trust, 828
cryptography, 576-587
and encryption, 577-584
implementation of, 584-585
SSL example of, 585-587
CSC (client-side caching), 827
C-SCAN scheduling algorithm, 460
CSMA, see carrier sense with multiple
access
CTSS operating system, 849
current directory, 390
current-file-position pointer, 375
cycles:
in CineBlitz, 728
CPU-1/0 burst, 154155
cycle stealing, 504
cylinder groups, 767
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d (page offset), 289
daemon process, 536
daisy chain, 496
data:
multimedia, 30
recovery of, 435437
thread-specific, 142
database systems, 222
data capability, 549
data-encryption standard (DES), 579
data files, 374
data fork, 381
datagrams, 626
data-in register, 498
data-link layer, 629
data loss, mean time to, 469
data migration, 615-616
data-out register, 498
data section (of process), 82
data striping, 470
DCOM, 826
DDOS attacks, 560
deadline I/O scheduler, 772
deadlock(s), 204, 676-683
avoidance of, 252, 256-262
with banker’s algorithm,
259-262
with resource-allocation-graph
algorithm, 258-259
with safe-state algorithm,
256-258
defined, 245
detection of, 262-265, 678—683
algorithm usage, 265
several instances of a
resource type, 263-265
single instance of each
resource type, 262-263
methods for handling, 252-253
with mutex locks, 247-248
necessary conditions for, 247-249
prevention/avoidance of, 676-678
prevention of, 252-256
and circular-wait condition,
254-256
and hold-and-wait condition,
253-254
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and mutual-exclusion
condition, 253
and no-preemption condition,
254
recovery from, 266-267
by process termination, 266
by resource preemption, 267
system model for, 245-247
system resource-allocation graphs
for describing, 249-251
deadlock-detection coordinator, 679
debuggers, 47, 48
dedicated devices, 506, 507
default signal handlers, 140
deferred procedure calls (DPCs), 791
deferred thread cancellation, 139
degree of multiprogramming, 88
delay, 721
delay-write policy, 648
delegation (NFS V4), 653
deletion, file, 375
demand paging, 319-325
basic mechanism, 320-322
defined, 319
with inverted page tables, 359360
and I/0 interlock, 361-362
and page size, 357-358
and performance, 323-325
and prepaging, 357
and program structure, 360-361
pure, 322
and restarting instructions, 322-323
and TLB reach, 358-359
demand-zero memory, 760
demilitarized zone (DMZ), 599
denial-of-service (DOS) attacks, 560,
575-576
density, areal, 492
dentry objects, 419, 765
DES (data-encryption standard), 579
design of operating systems:
distributed operating systems,
633-636
goals, 56
Linux, 742-744
mechanisms and policies, 56-57
Windows XP, 785-787
desktop, 42
deterministic modeling, 181-182
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development kernels (Linux), 739
device controllers, 6, 518. See also 1/0
systems
device directory, 386. See also directories
device drivers, 10, 11, 412, 496, 518, 842
device-management system calls, 53
device queues, 86-87
device reservation, 514-515
DFS, see distributed file system
digital certificates, 583-584
digital signatures, 582
digital-signature algorithm, 582
dining-philosophers problem, 207-209,
212-214
direct access (files), 383-384
direct blocks, 427
direct communication, 100
direct I/0O, 508
direct memory access (DMA), 11, 503-504
direct-memory-access (DMA) controller,
503
directories, 385-387
acyclic-graph, 391-394
general graph, 394-395
implementation of, 419420
recovery of, 435437
single-level, 387
tree-structured, 389-391
two-level, 388-389
directory objects (Windows XP), 794
direct virtual memory access (DVMA),
504
dirty bits (modify bits), 329
disinfection, program, 596-597
disk(s), 451-453. See also mass-storage
structure
allocation of space on, 421429
contiguous allocation, 421-423
indexed allocation, 425-427
linked allocation, 423-425
and performance, 427429
bad blocks, 46446
boot, 72, 464
boot block, 463464
efficient use of, 431
electronic, 10
floppy, 452453
formatting, 462463
free-space management for, 429431
host-attached, 455

low-level formatted, 454 s
magnetic, 9
magneto-optic, 479
network-attached, 455456
performance improvement for,
432-435
phase-change, 479
raw, 339
read-only, 480
read-write, 479
removable, 478-480
scheduling algorithms, 456462
C-SCAN, 460
FCFS, 457-458
LOOK, 460461
SCAN, 459-460
selecting, 461-462
SSTE, 458459
solid-state, 24
storage-area network, 456
structure of, 454
system, 464
WORM, 479
disk arm, 452
disk controller, 453
diskless clients, 644
disk mirroring, 820
disk scheduling:
CineBlitz, 728
in multimedia systems, 723-724
disk striping, 818
dispatched process, 87
dispatcher, 157
dispatcher objects, 220
Windows XP, 790
in Windows XP, 793
dispatch latency, 157, 703
distributed coordination:
and atomicity, 669-672
and concurrency control, 672676
and deadlocks, 676-683
detection, 678-683
prevention/avoidance,
676678
election algorithms for, 683-686
and event ordering, 663666
and mutual exclusion, 666-668
reaching algorithms for, 686688
distributed denial-of-service (DDOS)
attacks, 560



distributed file system (DFS), 398
stateless, 401
Windows X, 827
distributed file systems (DFSs), 641-642
AFS example of, 653-659
file operations, 657658
implementation, 658-659
shared name space, 656657
defined, 641
naming in, 643-646
remote file access in, 646-651
basic scheme for, 647
and cache location, 647-648
and cache-update policy, 648,
649
and caching vs. remote
service, 650-651
and consistency, 649-650
replication of files in, 652-653
stateful vs. stateless service in,
651-652
distributed information systems
(distributed naming services),
399
distributed lock manager (DLM), 15
distributed naming services, see
distributed information systems
distributed operating systems, 615-617
distributed-processing mechanisms,
824-826
distributed systems, 28-29
benefits of, 611-613
defined, 611
distributed operating systems as,
615-617
network operating systems as,
613-615
DLLs, see dynamic link libraries
DLM (distributed lock manager), 15
DMA, see direct memory access
DMA controller, see direct-memory-
access controller
DMZ (demilitarized zone), 599
domains, 400, 827-828
domain-name system (DNS), 399, 623
domain switching, 535
domain trees, 827
DOS attacks, see denial-of-service attacks
double buffering, 513, 729
double caching, 433
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double indirect blocks, 427 s

downsizing, 613

down time, 422

DPCs (deferred procedure calls), 791

DRAM, see dynamic random-access
memory

driver end (STREAM), 520

driver registration module (Linux),
746747

dual-booted systems, 417

dumpster diving, 562

duplex set, 820

DVMA (direct virtual memory access),
504

dynamic linking, 764

dynamic link libraries (DLLs), 281-282,
787

dynamic loading, 280-281

dynamic priority, 722

dynamic protection, 534

dynamic random-access memory
(DRAM), 8

dynamic routing, 625

dynamic storage-allocation problem,
286, 422

E

earliest-deadline-first (EDF) scheduling,
707,723

ease of use, 4, 784

ECC, see error-correcting code

EDF scheduling, see earliest-deadline-
first scheduling

effective access time, 323

effective bandwidth, 484

effective memory-access time, 294

effective UID, 27

efficiency, 3, 431432

EIDE buses, 453

election, 628

election algorithms, 683-686

electronic disk, 10

elevator algorithm, see SCAN scheduling ..
algorithm

embedded systems, 696

encapsulation (Java), 555

encoded files, 718

encrypted passwords, 589-590

encrypted viruses, 570
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encryption, 577-584
asymmetric, 580
authentication, 580-583
key distribution, 583-584
symmetric, 579-580
Windows XP, 821
enhanced integrated drive electronics
(EIDE) buses, 453
entry section, 193
entry set, 218
environmental subsystems, 786-787
environment vector, 749
EPROM (erasable programmable read-
only memory), 71
equal allocation, 341
erasable programmable read-only
memory (EPROM), 71
error(s), 515
hard, 465
soft, 463
error conditions, 316
error-correcting code (ECC), 462, 471
error detection, 40
escalate privileges, 27
escape (operating systems), 507
events, 220
event latency, 702
event objects (Windows XP), 790
event ordering, 663-666
exceptions (with interrupts), 501
exclusive lock mode, 672
exclusive locks, 378
exec() system call, 138
executable files, 82, 374
execution of user programs, 762-764
execution time, 278
exit section, 193
expansion bus, 496
expired array (Linux), 752
expired tasks (Linux), 752
exponential average, 161
export list, 441-442
ext2fs, sce second extended file system
extended file system, 413, 766
extent (contiguous space), 423
extents, 815
external data representation (XDR),
112
external fragmentation, 287-288, 422

F 3

failure:
detection of, 631-633
mean time to, 468
recovery from, 633
during writing of block, 477-478
failure handling (2PC protocol),
670672
failure modes (directories), 400-401
fair share (Solaris), 176
false negatives, 595
false positives, 595
fast I/O mechanism, 807
FAT (file-allocation table), 425
fault tolerance, 13, 634, 818-821
fault-tolerant systems, 634
FC (fiber channel), 455
FC-AL (arbitrated loop), 455
FCB (file-control block), 413
FC buses, 453
FCFS scheduling algorithm, see first-
come, first-served scheduling
algorithm
fibers, 832
fiber channel (FC), 455
fiber channel (FC) buses, 453
fids (NFS V4), 656
FIFO page replacement algorithm,
331-333
50-percent rule, 287
file(s), 22, 373-374. See also directories
accessing information on, 382-384
direct access, 383-384
sequential access, 382-383
attributes of, 374-375
batch, 379
defined, 374
executable, 82
extensions of, 379-390
internal structure of, 381-382
locking open, 377-379
operations on, 375-377
protecting, 402407
via file access, 402406
via passwords/permissions,
406407
recovery of, 435-437
storage structure for, 385-386



file access, 377, 402-406
file-allocation table (FAT), 425
file-control block (FCB), 413
file descriptor, 415
file handle, 415
FileLock (Java), 377
file management, 55
file-management system calls, 53
file mapping, 350
file migration, 643
file modification, 55
file objects, 419, 765
file-organization module, 413
file pointers, 377
file reference, 815
file replication (distributed file systems),
652-654
file-server systems, 31
file session, 401
file sharing, 397-402
and consistency semantics,
401402
with multiple users, 397-398
with networks, 398-401
and client-server model,
398-399
and distributed information
systems, 399400
and failure modes, 400-401
file systems, 373, 411413
basic, 412
creation of, 386
design problems with, 412
distributed, 398, see distributed file
systems
extended, 412
implementation of, 413419
mounting, 417
partitions, 416417
virtual systems, 417419
levels of, 412
Linux, 764-770
log-based transaction-oriented,
437-438
logical, 412
mounting of, 395-397
network, 438-444
remote, 398
WAFL, 444446
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File System Hierarchy Standard
document, 740

file-system management, 22-23

file-system manipulation (operating
system service), 40

file transfer, 614-615

file transfer protocol (FTP), 614-615

file viruses, 569

filter drivers, 806

firewalls, 31, 599-600

firewall chains, 776

firewall management, 776

FireWire, 454

firmware, 6, 71

first-come, first-served (FCFS)
scheduling algorithm, 158-159,
457458

first-fit strategy, 287

fixed-partition scheme, 286

fixed priority (Solaris), 176

fixed routing, 625

floppy disks, 452453

flow control, 521

flushing, 294

folders, 42

footprint, 697

foreground processes, 166

forests, 827-828

fork() and exec() process model (Linux),
748-750

fork() system call, 138

formatting, 462-463

forwarding, 465

forward-mapped page tables, 298

fragments, packet, 776

fragmentation, 287-288
external, 287-288, 422
internal, 287, 382

frame(s), 289, 626, 716
stack, 566-567
victim, 329

frame allocation, 340-343
equal allocation, 341
global vs. local, 342-343
proportional allocation, 341-342

frame-allocation algorithm, 330

frame pointers, 567

free-behind technique, 435

free objects, 356, 758
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free-space list, 429

free-space management (disks), 429431
bit vector, 429430
counting, 431
grouping, 431
linked list, 430431

front-end processors, 523

FTP, see file transfer protocol

ftp, 398

full backup, 436

fully distributed deadlock-detection
algorithm, 681-683

G

Gantt chart, 159

garbage collection, 68, 395

gateways, 626

GB (gigabyte), 6

gee (GNU C compiler), 740

GDT (global descriptor table), 306

general graph directories, 394-395

gigabyte (GB), 6

global descriptor table (GDT), 306

global ordering, 665

global replacement, 342

GNU C compiler (gcc), 740

GNU Portable Threads, 130

graceful degradation, 13

graphs, acyclic, 392

graphical user interfaces (GUIs),
41-43

grappling hook, 573

Green threads, 130

group identifiers, 27

grouping, 431

group policies, 828

group rights (Linux), 778

guest operating systems, 67

GUIs, see graphical user interfaces

H

HAL, sec hardware-abstraction layer
handheld computers, 5

handheld systems, 30-31

handles, 793, 796

handling (of signals), 123
handshaking, 498-499, 518

¥

hands-on computer systems, see
interactive computer systems
happened-before relation, 664—666
hard affinity, 170
hard-coding techniques, 100
hard errors, 465
hard links, 394
hard real-time systems, 696, 722
hardware, 4
1/0 systems, 496-505
direct memory access,
503-504
interrupts, 499-503
polling, 498-499
for storing page tables, 292294
synchronization, 197-200
hardware-abstraction layer (HAL), 787,
788
hardware objects, 533
hashed page tables, 300
hash functions, 582
hash tables, 420
hash value (message digest), 582
heaps, 82, 835-836
heavyweight processes, 127
hierarchical paging, 297-300
hierarchical storage management
(HSM), 483
high availability, 14
high performance, 786
hijacking, session, 561
hit ratio, 294, 358
hive, 810
hold-and-wait condition (deadlocks),
253-254
holes, 286
holographic storage, 480
homogeneity, 169
host adapter, 496
host-attached storage, 455
host controller, 453
hot spare disks, 475
hot-standby mode, 15
HSM (hierarchical storage
management), 483
human security, 562
Hydra, 547-549
hyperspace, 797
hyperthreading technology, 171



IBM 085/360, 850-851
identifiers:
file, 374
group, 27
user, 27
idle threads, 177
IDSs, see intrusion-detection systems
IKE protocol, 585
ILM (information life-cycle
management), 483
immutable shared files, 402
implementation:
of CPU scheduling algorithms,
184-185
of operating systems, 57-58
of real-time operating systems,
700-704
and minimizing latency,
702-704
and preemptive kernels, 701
and priority-based
scheduling, 700-701
of transparent naming techniques,
645-646
of virtual machines, 65-66
incremental backup, 436
indefinite blocking (starvation), 163, 204
independence, location, 643
independent disks, 469
independent processes, 96
index, 384
index block, 426
indexed disk space allocation, 425-427
index root, 816
indirect blocks, 427
indirect communication, 100
information life-cycle management
(ILM), 483
information-maintenance system calls,
53-54
inode objects, 419, 765
input/output, see under 1/0
input queue, 278
InServ storage array, 476
instance handles, 831
instruction-execution cycle, 275-276
instruction-execution unit, 811
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instruction register, 8 »
integrity, breach of, 560
intellimirror, 828
Intel Pentium processor, 305-308
interactive (hands-on) computer
systems, 16
interface(s):
batch, 41
client, 642
defined, 505
intermachine, 642
Windows XP networking, 822
interlock, 1/0, 361-362
intermachine interface, 642
internal fragmentation, 287, 382
international use, 787
Internet address, 623
Internet Protocol (IP), 584-585
interprocess communication (IPC), 96-102
in client-server systems, 108-115
remote method invocation,
114-115
remote procedure calls, 111-113
sockets, 108-111
in Linux, 739, 773-774
Mach example of, 105-106
in message-passing systems, 99-102
POSIX shared-memory example of,
103-104
in shared-memory systems, 9799
Windows XP example of, 106-108
interrupt(s), 7, 499-503
defined, 499
in Linux, 754-755
interrupt chaining, 501
interrupt-controller hardware, 501
interrupt-dispatch table (Windows XP),
792
interrupt-driven data transfer, 353
interrupt-driven operating systems, 17-18
interrupt latency, 702-703
interrupt priority levels, 501
interrupt-request line, 499
interrupt vector, 8, 284, 501
intruders, 560
intrusion detection, 594-596
intrusion-detection systems (IDSs),
594-595
intrusion-prevention systems (IPSs), 595
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inverted page tables, 301-302, 359-360
/O (input/output), 4, 10-11
memory-mapped, 353
overlapped, 843-845
programmed, 353
I/O-bound processes, 88-89
I/O burst, 154
I/0 channel, 523, 524
I/0 interlock, 361-362
I/0O manager, 805-806
I/O operations (operating system
service), 40
I/0 ports, 353
I/O request packet (IRP), 805
I/O subsystem(s), 26
kernels in, 6, 511-518
procedures supervised by, 517-518
I/0 system(s), 495-496
application interface, 505-511
block and character devices,
507-508
blocking and nonblocking
1/0, 510-511
clocks and timers, 509-510
network devices, 508-509
hardware, 496-505
direct memory access, 503-504
interrupts, 499-503
polling, 498-499
kernels, 511-518
buffering, 512-514
caching, 514
data structures, 516-517
error handling, 515
1/0 scheduling, 511-512
and [/O subsystems, 517-518
protection, 515-516
spooling and device
reservation, 514-515
Linux, 770-773
block devices, 771-772
character devices, 772-773
STREAMS mechanism, 520-522
and system performance, 522-525
transformation of requests to
hardware operations, 518-520
IP, see Internet Protocol
IPC, see interprocess communication
IPSec, 585
IPSs (intrusion-prevention systems), 595

IRP (I/O request packet), 805
ISCSI, 456

ISO protocol stack, 630

ISO Reference Model, 585

J

Java:
file locking in, 377-378
language-based protection in,
553-555
monitors in, 218
Java threads, 134-138
Java Virtual Machine (JVM), 68
JIT compiler, 68
jitter, 721
jobs, processes vs., 82
job objects, 803
job pool, 17
job queues, 85
job scheduler, 88
job scheduling, 17
journaling, 768-769
journaling file systems, see log-based

transaction-oriented file systems

just-in-time (JIT) compiler, 68
JVM (Java Virtual Machine), 68

K

KB (kilobyte), 6

Kerberos, 814

kernel(s), 6, 511-518
buffering, 512-514
caching, 514
data structures, 516-517
error handling, 515
1/0O scheduling, 511512
and [/0O subsystems, 517-518
Linux, 743, 744
multimedia systems, 720-722
nonpreemptive, 194-195
preemptive, 194-195, 701
protection, 515-516
real-time, 698-700

spooling and device reservation,

514-515
task synchronization (in Linux),
753-755
Windows XP, 788-793, 829



kernel extensions, 63
kernel memory allocation, 353-356
kernel mode, 18, 743
kernel modules, 745-748
conflict resolution, 747-748
driver registration, 746-747
management of, 745-746
kernel threads, 129
Kerr effect, 479
keys, 544, 547, 577
private, 580
public, 580
key distribution, 583-584
key ring, 583
keystreams, 580
keystroke logger, 571
kilobyte (KB), 6

L

language-based protection systems,
550-555
compiler-based enforcement,
550-553
Java, 553-555
LAN:Ss, see local-area networks
latency, in real-time systems, 702-704
layers (of network protocols), 584
layered approach (operating system
structure), 59-61
lazy swapper, 319
LCNs (logical cluster numbers), 8§15
LDAP, see lightweight directory-access
protocol
LDT (local descriptor table), 306
least-frequently used (LFU) page-
replacement algorithm, 338
least privilege, principle of, 532-533
least-recently-used (LRU) page-
replacement algorithm, 334-336
levels, 719
LFU page-replacement algorithm, 338
libraries:
Linux system, 743, 744
shared, 281282, 318
licenses, software, 235
lightweight directory-access protocol
(LDAP), 400, 828
limit register, 276, 277
linear addresses, 306
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linear lists (files), 420
line discipline, 772
link(s):
communication, 99
defined, 392
hard, 394
resolving, 392
symbolic, 794
linked disk space allocation, 423-425
linked lists, 430431
linked scheme index block, 426427
linking, dynamic vs. static, 281-282, 764
Linux, 737-780
adding system call to Linux kernel
(project), 74-78
design principles for, 742-744
file systems, 764-770
ext2fs, 766-768
journaling, 768-769
process, 769-770
virtual, 765-766
history of, 737-742
distributions, 740-741
first kernel, 738-740
licensing, 741-742
system description, 740
interprocess communication,
773-774
1/0 system, 770-773
block devices, 771-772
character devices, 772--773
kernel modules, 745-748
memory management, 756-764
execution and loading of
user programs,
762-764
physical memory, 756759
virtual memory, 759-762
network structure, 774-777
on Pentium systems, 307-309
process management, 748-757
fork() and exec() process
model, 748-750
processes and threads,
750-751
process representation in, 86
real-time, 711
scheduling, 751-756
kernel synchronization,
753-755



902 Index

Linux (continued)
process, 751-753
symmetric multiprocessing,
755-756
scheduling example, 179-181
security model, 777-779
access control, 778-779
authentication, 777
swap-space management in, 468
synchronization in, 221
threads example, 144-146
Linux distributions, 738, 740-741
Linux kernel, 738-740
Linux system, components of, 738, 743-744
lists, 316
Little’s formula, 183
live streaming, 717
load balancers, 34
load balancing, 170-171
loader, 842
loading:
dynamic, 280-281
in Linux, 762-764
load sharing, 169, 612
load time, 278
local-area networks (LANSs), 14, 28,
618-619
local descriptor table (LDT), 306
locality model, 344
locality of reference, 322
local name space, 655
local (nonremote) objects, 115
local playback, 716
local procedure calls (LPCs), 786,
804-805
local replacement, 342
local replacement algorithm (priority
replacement algorithm), 344
location, file, 374
location independence, 643
location-independent file identifiers, 646
location transparency, 643
lock(s), 197, 544
advisory, 379
exclusive, 378
in Java API, 377-378
mandatory, 379
mutex, 201, 251-252
reader-writer, 207
shared, 378

locking protocols, 227-228, 672-675+

lock-key scheme, 544

lock() operation, 377

log-based transaction-oriented file
systems, 437-438

log-file service, 817

logging, write-ahead, 223-224

logging area, 817

logical address, 279

logical address space, 279-280

logical blocks, 454

logical clock, 665

logical cluster numbers (LCNs), 815

logical file system, 413

logical formatting, 463

logical memory, 17, 317. See also virtual
memory

logical records, 383

logical units, 455

login, network, 399

long-term scheduler (job scheduler), 88

LOOK scheduling algorithm, 460461

loopback, 111

lossless compression, 718

lossy compression, 718-719

low-level formatted disks, 454

low-level formatting (disks), 462-463

LPCs, see local procedure calls

LRU-approximation page replacement
algorithm, 336-338

M

MAC (message-authentication code), 582

MAC (medium access control) address,
636

Mach operating system, 61, 105-106,
851-853

Macintosh operating system, 381-382

macro viruses, 569

magic number (files), 381

magnetic disk(s), 9, 451-453. See also
disk(s)

magnetic tapes, 453-454, 480

magneto-optic disks, 479

mailboxes, 100

mailbox sets, 106

mailslots, 824

mainframes, 5



main memory, 8-9
and address binding, 278-279
contiguous allocation of, 284285
and fragmentation, 287-288
mapping, 285
methods, 286287
protection, 285
and dynamic linking, 281-282
and dynamic loading, 280-281
and hardware, 276-278
Intel Pentium example:
with Linux, 307-309
paging, 306-308
segmentation, 305-307
and logical vs. physical address
space, 279-280
paging for management of, 288-302
basic method, 289-292
hardware, 292-295
hashed page tables, 300
hierarchical paging, 297-300
Intel Pentium example,
306-308
inverted page tables, 301-302
protection, 295-296
and shared pages, 296-297
segmentation for management of,
302-305
basic method, 302-304
hardware, 304-305
Intel Pentium example,
305-307
and swapping, 282-284
majority protocol, 673-674
MANSs (metropolitan-area networks), 28
mandatory file-locking mechanisms, 379
man-in-the-middle attack, 561
many-to-many multithreading model,
130-131
many-to-one multithreading model,
129-130
marshalling, 825
maskable interrupts, 501
masquerading, 560
mass-storage management, 23-24
mass-storage structure, 451454
disk attachment:
host-attached, 455
network-attached, 455-456
storage-area network, 456
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disk management: :
bad blocks, 464-46
boot block, 463464
formatting of disks, 462463
disk scheduling algorithms,
456-462
C-SCAN, 460
FCFS, 457-458
LOOK, 460461
SCAN, 459-460
selecting, 461-462
SSTF, 458-459
disk structure, 454
extensions, 476
magnetic disks, 451453
magnetic tapes, 453454
RAID structure, 468—-477
performance improvement, 470
problems with, 477
RAID levels, 470-476
reliability improvement,
468-470
stable-storage implementation,
477-478
swap-space management, 466-468
tertiary-storage, 478-488
future technology for, 480
magnetic tapes, 480
and operating system
support, 480483
performance issues with,
484488
removable disks, 478-480
master book record (MBR), 464
master file directory (MFD), 388
master file table, 414
master key, 547
master secret (SSL), 586
matchmakers, 112
matrix product, 149
MB (megabyte), 6
MBR (master book record), 464
MCP operating system, 853
mean time to data loss, 469
mean time to failure, 468
mean time to repair, 469
mechanisms, 56-57
media players, 727
medium access control (MAC) address,
636
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medium-term scheduler, 89
megabyte (MB), 6
memory:
anonymous, 467
core, 846
direct memory access, 11
direct virtual memory access, 504
logical, 17, 317
main, se¢ main memory
over-allocation of, 327
physical, 17
secondary, 322
semiconductor, 10
shared, 96, 318
unified virtual memory, 433
virtual, see virtual memory
memory-address register, 279
memory allocation, 286-287
memory management, 21-22
in Linux, 756-764
execution and loading of
user programs, 762--764
physical memory, 756759
virtual memory, 759-762
in Windows XP, 834-836
heaps, 835-836
memory-mapping files, 835
thread-local storage, 836
virtual memory, 834-835
memory-management unit (MMU),
279-280, 799
memory-mapped files, 798
memory-mapped /O, 353, 497
memory mapping, 285, 348-353
basic mechanism, 348-350
defined, 348
[/0, memory-mapped, 353
in Linux, 763-764
in Win32 API, 350-353
memory-mapping files, 835
memory protection, 285
memory-resident pages, 320
memory-style error-correcting
organization, 471
MEMS (micro-electronic mechanical
systems), 480
messages:
connectionless, 626
in distributed operating systems, 613
message-authentication code (MAC), 582

&

message digest (hash value), 582
message modification, 560
message passing, 96
message-passing model, 54, 99-102
message queue, 848
message switching, 627
metadata, 400, 816
metafiles, 727
methods (Java), 553
metropolitan-area networks (MANSs), 28
MFD (master file directory), 388
MFU page-replacement algorithm, 338
micro-electronic mechanical systems
(MEMS), 480
microkernels, 61-64
Microsoft Interface Definition
Language, 825
Microsoft Windows, see under Windows
migration:
computation, 616
data, 615-616
file, 643
process, 617
minicomputers, 5
minidisks, 386
miniport driver, 806
mirroring, 469
mirror set, 820
MMU, see memory-management unit
mobility, user, 440
mode bit, 18
modify bits (dirty bits), 329
modules, 62-63, 520
monitors, 209-217
dining-philosophers solution using,
212-214
implementation of, using
semaphores, 214-215
resumption of processes within,
215-217
usage of, 210-212
monitor calls, see system calls
monoculture, 571
monotonic, 665
Morris, Robert, 572-574
most-frequently used (MFU) page-
replacement algorithm, 338
mounting, 417
mount points, 395, 821
mount protocol, 440441



mount table, 417, 518
MPEG files, 719
MS-DOS, 811-812
multicasting, 725
MULTICS operating system, 536-538,
849-850
multilevel feedback-queue scheduling
algorithm, 168-169
multilevel index, 427
multilevel queue scheduling algorithm,
166-167
multimedia, 715-716
operating system issues with, 718
as term, 715-716
multimedia data, 30, 716-717
multimedia systems, 30, 715
characteristics of, 717-718
CineBlitz example, 728-730
compression in, 718-720
CPU scheduling in, 722-723
disk scheduling in, 723-724
kernels in, 720-722
network management in, 725-728
multinational use, 787
multipartite viruses, 571
multiple-coordinator approach
(concurrency control), 673
multiple-partition method, 286
multiple universal-naming-convention
provider (MUP), 826
multiprocessing:
asymmetric, 169
symmetric, 169, 171-172
multiprocessor scheduling, 169-172
approaches to, 169-170
examples of:
Linux, 179-181
Solaris, 173, 175-177
Windows XP, 178-179
and load balancing, 170-171
and processor affinity, 170
symmetric multithreading, 171-172
multiprocessor systems (parallel
systems, tightly coupled systems),
12-13
multiprogramming, 15-17, 88
multitasking, sce time sharing
multithreading:
benefits of, 127-129
cancellation, thread, 139
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and exec() system call, 138
and fork() system call, 138
models of, 129-131
pools, thread, 141-142
and scheduler activations, 142-143
and signal handling, 139-141
symmetric, 171-172
and thread-specific data, 142
MUP (multiple universal-naming-
convention provider), 826
mutex:
adaptive, 218-219
in Windows XP, 790
mutex locks, 201, 247-248
mutual exclusion, 247, 666-668
centralized approach to, 666
fully-distributed approach to,
666—668
token-passing approach to, 668
mutual-exclusion condition (deadlocks),
253

N

names:
resolution of, 623, 828-829
in Windows XP, 793-794

named pipes, §24

naming, 100-101, 399-400
defined, 643
domain name system, 399
of files, 374
lightweight diretory-access

protocol, 400
and network communication,
622625

national-language-support (NLS) API,
787

NDIS (network device interface
specification), 822

near-line storage, 480

negotiation, 721

NetBEUI (NetBIOSextended user
interface), 823

NetBIOS (network basic input/output
system), 823, 824

NetBIOSextended user interface
(NetBEUI), 823

.NET Framework, 69
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network(s). See also local-area networks
(LANSs); wide-area networks
{WANSs)
communication protocols in,
628-631
communication structure of,
622-628
and connection strategies,
626-627
and contention, 627-628
and naming/name
resolution, 622-625
and packet strategies, 626
and routing strategies,
625-626
defined, 28
design issues with, 633-636
example, 636-637
in Linux, 774-777
metropolitan-area (MANSs), 28
robustness of, 631-633
security in, 562
small-area, 28
threats to, 571-572
topology of, 620-622
types of, 617-618
in Windows XP, 822~829
Active Directory, 828
distributed-processing
mechanisms, 824-826
domains, 827-828
interfaces, 822
name resolution, 828-829
protocols, 822-824
redirectors and servers,
826-827
wireless, 31
network-attached storage, 455456
network basic input/output system, se¢
NetBIOS
network computers, 32
network devices, 508-509, 771
network device interface specification
(NDIS), 822
network file systems (NFS), 438-444
mount protocol, 440441
NFS protocol, 441442
path-name translation, 442-443
remote operations, 443444
network information service (NIS), 399

network layer, 629 f

network-layer protocol, 584

network login, 399

network management, in multimedia
systems, 725-728

network operating systems, 28, 613-615

network virtual memory, 647

new state, 83

NEFS, see network file systems

NFS protocol, 440442

NES V4, 653

nice value (Linux), 179, 752

NIS (network information service), 399

NLS (national-language-support) API,
787

nonblocking I/0, 510-511

nonblocking (asynchronous) message
passing, 102

noncontainer objects (Windows XP), 603

nonmaskable interrupt, 501

nonpreemptive kernels, 194-195

nonpreemptive scheduling, 156

non-real-time clients, 728

nonremote (local) objects, 115

nonrepudiation, 583

nonresident attributes, 815

nonserial schedule, 226

nonsignaled state, 220

nonvolatile RAM (NVRAM), 10

nonvolatile RAM (NVRAM) cache, 470

nonvolatile storage, 10, 223

no-preemption condition (deadlocks),
254

Novell NetWare protocols, 823

NTES, 814-816

NVRAM (nonvolatile RAM), 10

NVRAM (nonvolatile RAM) cache, 470

(o]

objects:

access lists for, 542-543

in cache, 355

free, 356

hardware vs. software, 533

in Linux, 758

used, 356

in Windows XP, 793-796
object files, 374



object linking and embedding (OLE),
825-826
object serialization, 115
object table, 796
object types, 419, 795
off-line compaction of space, 422
OLE, see object linking and embedding
on-demand streaming, 717
one-time pad, 591
one-time passwords, 530-591
one-to-one multithreading model, 130
one-way trust, 828
on-line compaction of space, 422
open-file table, 376
open() operation, 376
operating system(s), 1
defined, 3, 5-6
design goals for, 56
early, 839-845
dedicated computer systems,
839-840
overlapped I/0, 843-845
shared computer systems,
841-843
features of, 3
functioning of, 3-6
guest, 67
implementation of, 57-58
interrupt-driven, 17-18
mechanisms for, 56-57
network, 28
operations of:
modes, 18-20
and timer, 20
policies for, 56-57
real-time, 29-30
as resource allocator, 5
security in, 562
services provided by, 39-41
structure of, 15-17, 58-64
layered approach, 59-61
microkernels, 61-64
modules, 62-63
simple structure, 58-59
system’s view of, 5
user interface with, 4-5, 4143
optimal page replacement algorithm,
332-334
ordering, event, see event ordering
orphan detection and elimination, 652
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OS/2 operating system, 783 »
out-of-band key delivery, 583
over allocation (of memory), 327
overlapped I/0, 843-845
overprovisioning, 720

owner rights (Linux), 778

P

p (page number), 289
packets, 626, 776
packet switching, 627
packing, 382
pages:
defined, 289
shared, 296--297
page allocator (Linux), 757
page-buffering algorithms, 338-339
page cache, 433, 759
page directory, 799
page-directory entries (PDEs), 799
page-fault-frequency (PFF), 347-348
page-fault rate, 325
page-fault traps, 321
page frames, 799
page-frame database, 801
page number (p), 289
page offset (d), 289
pageout (Solaris), 363-364
pageout policy (Linux), 761
pager (term), 319
page replacement, 327-339. See also
frame allocation
and application performance, 339
basic mechanism, 328-331
counting-based page replacement,
338
FIFO page replacement, 331-333
global vs. local, 342
LRU-approximation page
replacement, 336-338
LRU page replacement, 334-336
optimal page replacement,
332-334
and page-buffering algorithms,
338-339
page replacement algorithm, 330
page size, 357-358
page slots, 468
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page table(s), 289-292, 322, 799
clustered, 300
forward-mapped, 298
hardware for storing, 292-294
hashed, 300
inverted, 301-302, 359-360

page-table base register (PTBR), 293

page-table length register (PTLR), 296

page-table self-map, 797

paging, 288-302
basic method of, 289-292
hardware support for, 292-295
hashed page tables, 300
hierarchical, 297-300
Intel Pentium example, 306-308
inverted, 301-302
in Linux, 761-762
and memory protection, 295-296
priority, 365
and shared pages, 296297
swapping vs., 466

paging files (Windows XP), 797

paging mechanism (Linux), 761

paired passwords, 590

PAM (pluggable authentication
modules), 777

parallel systems, se¢ multiprocessor
systems

parcels, 114

parent process, 90, 795-796

partially connected networks, 621-622

partition(s), 286, 386, 416-417
boot, 464
raw, 467
root, 417

partition boot sector, 414

partitioning, disk, 463

passwords, 588-591
encrypted, 589-590
one-time, 590591
vulnerabilities of, 588-589

path name, 388-389

path names:
absolute, 390
relative, 390

path-name translation, 442-443

PCBs, see process control blocks

PCI bus, 496

PCS (process-contention scope), 172

PC systems, 3

PDAs, see personal digital assistants
PDEs (page-directory entries), 799
peer-to-peer computing, 33-34
penetration test, 592-593
performance:

and allocation of disk space, 427429

and I/0 system, 522-525
with tertiary-storage, 484-488
cost, 485488
reliability, 485
speed, 484485
of Windows XP, 786
performance improvement, 432-435, 470
periods, 720
periodic processes, 720
permissions, 406
per-process open-file table, 414
persistence of vision, 716
personal computer (PC) systems, 3
personal digital assistants (PDAs), 10,
30
personal firewalls, 600
personal identification number (PIN),
591
Peterson’s solution, 195-197
PFF, sce page-fault-frequency
phase-change disks, 479
phishing, 562
physical address, 279
physical address space, 279-280
physical formatting, 462
physical layer, 628, 629
physical memory, 17, 315-316, 756-759
physical security, 562
PIC (position-independent code), 764
pid (process identifier), 90
PIN (personal identification number),
591
pinning, 807-808
PIO, sce programmed 1/O
pipe mechanism, 774
platter (disks), 451
plug-and-play and (PnP) managers,
809-810
pluggable authentication modules
(PAM), 777
PnP managers, sce plug-and-play and
managers



point-to-point tunneling protocol
(PPTP), 823
policy(ies), 56-57
group, 828
security, 592
policy algorithm (Linux), 761
polling, 498499
polymorphic viruses, 570
pools:
of free pages, 327
thread, 141-142
pop-up browser windows, 564
ports, 353, 496
portability, 787
portals, 32
port driver, 806
port scanning, 575
position-independent code (PIC), 764
positioning time (disks), 452
POSIX, 783, 786
interprocess communication
example, 103-104
in Windows XP, 813-814
possession (of capability), 543
power-of-2 allocator, 354
PPTP (point-to-point tunneling
protocol), 823
P + Q redundancy scheme, 473
preemption points, 701
preemptive kernels, 194-195, 701
preemptive scheduling, 155-156
premaster secret (SSL), 586
prepaging, 357
presentation layer, 629
primary thread, 830
principle of least privilege, 532-533
priority-based scheduling, 700-701
priority-inheritance protocol, 219, 704
priority inversion, 219, 704
priority number, 216
priority paging, 365
priority replacement algorithm, 344

priority scheduling algorithm, 162-164

private keys, 580
privileged instructions, 19
privileged mode, sec kernel mode
process(es), 17
background, 166
communication between, se¢
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interprocess communication

components of, 82

context of, 89, 749-750

and context switches, 89-90
cooperating, 96

defined, 81

environment of, 749

faulty, 687-688

foreground, 166
heavyweight, 127
independent, 96

1/O-bound vs. CPU-bound, 88-89

job vs., 82
in Linux, 750-751

multithreaded, see multithreading

operations on, 90-95
creation, 90-95
termination, 95
programs vs., 21, 82, 83
scheduling of, 85-90
single-threaded, 127
state of, 83
as term, 81-82
threads performed by, 84-85
in Windows XP, 830
process-contention scope (PCS), 172
process control blocks (PCBs, task
control blocks), 83-84
process-control system calls, 47-52
process file systems (Linux), 769-770
process identifier (pid), 90
process identity (Linux), 748-749
process management, 20-21
in Linux, 748-757
fork() and exec() process
model, 748-750
processes and threads,
750-751

process manager (Windows XP), 802-804

process migration, 617
process mix, 88-89
process objects (Windows XP), 790
processor affinity, 170
processor sharing, 165
process representation (Linux), 86
process scheduler, 85
process scheduling;:
in Linux, 751-753
thread scheduling vs., 153
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process synchronization:
about, 191193
and atomic transactions, 222-230
checkpoints, 224-225
concurrent transactions,
225-230
log-based recovery, 223-224
system model, 222-223
bounded-buffer problem, 205
critical-section problem, 193-195
hardware solution to, 197-200
Peterson’s solution to,
195-197
dining-philosophers problem,
207-209, 212-214
examples of:
Java, 218
Linux, 221
Pthreads, 221-222
Solaris, 217-219
Windows XP, 220-221
monitors for, 209-217
dining-philosophers solution,
212214
resumption of processes
within, 215-217
semaphores, implementation
using, 214-215
usage, 210-212
readers-writers problem, 206-207
semaphores for, 200-204
process termination, deadlock recovery
by, 266
production kernels (Linux), 739
profiles, 719
programs, processes vs., 82, 83. See¢ also
application programs
program counters, 21, 82
program execution (operating system
service), 40
program files, 374
program loading and execution, 55
programmable interval timer, 509
programmed 1/0 (PIO), 353, 503
programming-language support, 55
program threats, 563-571
logic bombs, 565
stack- or buffer overflow attacks,
565-568
trap doors, 564-565

Trojan horses, 563-564 :
viruses, 568-571
progressive download, 716
projects, 176
proportional allocation, 341
proportional share scheduling, 708
protection, 531
access control for, 402406
access matrix as model of, 538-542
control, access, 545-546
implementation, 542-545
capability-based systems, 547-550
Cambridge CAP system,
549-550
Hydra, 547-549
in computer systems, 26-27
domain of, 533-538
MULTICS example, 536-538
structure, 534-535
UNIX example, 535-536
error handling, 515
file, 374
of file systems, 402-407
goals of, 531-532
170, 515-516
language-based systems, 550-555
compiler-based enforcement,
550553
Java, 553-555
as operating system service, 41
in paged environment, 295-296
permissions, 406
and principle of least privilege,
532-533
retrofitted, 407
and revocation of access rights,
546-547
security vs., 559
static vs. dynamic, 534
from viruses, 596-598
protection domain, 534
protection mask (Linux), 778
protection subsystems (Windows XP),
788
protocols, Windows XP networking,
822-824
PTBR (page-table base register), 293
Pthreads, 132-134
scheduling, 172-174
synchronization in, 221-222



Pthread scheduling, 706-710

PTLR (page-table length register), 296
public domain, 741

public keys, 580

pull migration, 170

pure code, 296

pure demand paging, 322

push migration, 170, 644

Q

quantum, 789
queue(s), 85-87

capacity of, 102

input, 278

message, 848

ready, 85, 87, 283
queueing diagram, 87
queueing-network analysis, 183

R

race condition, 193
RAID (redundant arrays of inexpensive
disks), 468-477
levels of, 470-476
performance improvement, 470
problems with, 477
reliability improvement, 468-470
structuring, 469
RAID array, 469
RAID levels, 470-474
RAM (random-access memory), 8
random access, 717
random-access devices, 506, 507, 844
random-access memory (RAM), 8
random-access time (disks), 452
rate-monotonic scheduling algorithm,
705-707
raw disk, 339, 416
raw disk space, 386
raw 1/O, 508
raw partitions, 467
RBAC (role-based access control), 545
RC 4000 operating system, 848-849
reaching algorithms, 686-688
read-ahead technique, 435
readers, 206
readers-writers problem, 206-207
reader-writer locks, 207
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reading files, 375
read-modify-write cycle, 473
read only devices, 506, 507
read-only disks, 480
read-only memory (ROM), 71, 463464
read queue, 772
read-write devices, 506, 507
read-write disks, 479
ready queue, 85, 87, 283
ready state, 83
ready thread state (Windows XP), 789
real-addressing mode, 699
real-time class, 177
real-time clients, 728
real-time operating systems, 29-30
real-time range (Linux schedulers), 752
real-time streaming, 716, 726-728
real-time systems, 29-30, 695-696
address translation in, 699-700
characteristics of, 696-698
CPU scheduling in, 704-710
defined, 695
features not needed in, 698-699
footprint of, 697
hard, 696, 722
implementation of, 700-704
and minimizing latency,
702-704
and preemptive kernels, 701
and priority-based
scheduling, 700-701
soft, 696, 722
VxWorks example, 710-712
real-time transport protocol (RTP), 725
real-time value (Linux), 179
reconfiguration, 633
records:
logical, 383
master boot, 464
recovery:
backup and restore, 436437
consistency checking, 435-436
from deadlock, 266-267
by process termination, 266
by resource preemption, 267
from failure, 633
of files and directories, 435437
Windows XP, 816-817
redirectors, 826
redundancy, 469. See also RAID
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redundant arrays of inexpensive disks,
see RAID
Reed-Solomon codes, 473
reentrant code (pure code), 296
reference bits, 336
Reference Model, ISO, 585
reference string, 330
register(s), 47
base, 276, 277
limit, 276, 277
memory-address, 279
page-table base, 293
page-table length, 296
for page tables, 292-293
relocation, 280
registry, 55, 810
relative block number, 383-384
relative path names, 390
relative speed, 194
release() operation, 377
reliability, 626
of distributed operating systems,
612-613
in multimedia systems, 721
of Windows XP, 785
relocation register, 280
remainder section, 193
remote file access (distributed file
systems), 646-651
basic scheme for, 647
and cache location, 647-648
and cache-update policy, 648, 649
and caching vs. remote service,
650-651
and consistency, 649-650
remote file systems, 398
remote file transfer, 614-615
remote login, 614
remote method invocation (RMI), 114-115
remote operations, 443-444
remote procedure calls (RPCs), 825
remote-service mechanism, 646
removable storage media, 481483
application interface with, 481482
disks, 478480
and file naming, 482483
and hierarchical storage
management, 483
magnetic disks, 451-453

magnetic tapes, 453-454, 4807
rendezvous, 102
repair, mean time to, 469
replay attacks, 560
replication, 475
repositioning (in files), 375
request edge, 249
request manager, 772
resident attributes, 815
resident monitor, 841
resolution:
name, 623
and page size, 358
resolving links, 392
resource allocation (operating system
service), 41
resource-allocation graph algorithm,
258-259
resource allocator, operating system as,
5
resource fork, 381
resource manager, 722
resource preemption, deadlock recovery
by, 267
resource-request algorithm, 260-261
resource reservations, 721-722
resource sharing, 612
resource utilization, 4
response time, 16, 157-158
restart area, 817
restore:
data, 436437
state, 89
retrofitted protection mechanisms, 407
revocation of access rights, 546-547
rich text format (RTF), 598
rights amplification (Hydra), 548
ring algorithm, 685-686
ring structure, 668
risk assessment, 592-593
RMI, see remote method invocation
roaming profiles, 827
robotic jukebox, 483
robustness, 631-633
roles, 545
role-based access control (RBAC), 545
rolled-back transactions, 223
roll out, roll in, 282
ROM, see read-only memory



root partitions, 417

root uid (Linux), 778

rotational latency (disks), 452, 457

round-robin (RR) scheduling algorithm,
164-166

routing:
and network communication,

625-626
in partially connected networks,
621-622

routing protocols, 626

routing table, 625

RPCs (remote procedure calls)

RR scheduling algorithm, see round-
robin scheduling algorithm

RSX operating system, 853

RTF (rich text format), 598

R-timestamp, 229

RTP (real-time transport protocol), 725

running state, 83

running system, 72

running thread state (Windows XP),
789

runqueue data structure, 180, 752

RW (read-write) format, 24

S

safe computing, 598
safe sequence, 256
safety algorithm, 260
safety-critical systems, 696
sandbox (Tripwire file system), 598
SANSs, see storage-area networks
SATA buses, 453
save, state, 89
scalability, 634
SCAN (elevator) scheduling algorithm,
459460, 724
schedules, 226
scheduler(s), 87-89
long-term, 88
medium-term, 89
short-term, 88
scheduler activation, 142-143
scheduling;:
cooperative, 156
CPU, see CPU scheduling
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disk scheduling algorithms, ,
456462
C-5CAN, 460
FCFS, 457-458
LOOK, 460—461
SCAN, 459460
selecting, 461-462
SSTE, 458459
earliest-deadline-first, 707
1/0, 511-512
job, 17
in Linux, 751-756
kernel synchronization,
753-755
process, 751-753
symmetric multiprocessing,
755-756
nonpreemptive, 156
preemptive, 155156
priority-based, 700-701
proportional share, 708
Pthread, 708-710
rate-monotonic, 705707
thread, 172-173
in Windows XP, 789-790,
831-833
scheduling rules, 832
SCOPE operating system, 853
script kiddies, 568
SCS (system-contention scope), 172
SCSI (small computer-systems
interface), 10
SCSI buses, 453
SCSI initiator, 455
SCSI targets, 455
search path, 389
secondary memory, 322
secondary storage, 9, 411. See also disk(s)
second-chance page-replacement
algorithm (clock algorithm),
336-338
second extended file system (ext2fs),
766-769
section objects, 107
sectors, disk, 452
sector slipping, 465
sector sparing, 465, 820
secure single sign-on, 400
secure systems, 560
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security. See also file access; program
threats; protection; user
authentication
classifications of, 600-602
in computer systems, 27
and firewalling, 599-600
implementation of, 592-599
and accounting, 599
and auditing, 599
and intrusion detection,
594-596
and logging, 599
and security policy, 592
and virus protection,
596-598
and vulnerability assessment,
592-594
levels of, 562
in Linux, 777-779
access control, 778-779
authentication, 777
as operating system service, 41
as problem, 559-563
protection vs., 559
and system/network threats,
571-576
denial of service, 575-576
port scanning, 575
worms, 572-575
use of cryptography for, 576-587
and encryption, 577-584
implementation, 584-585
SSL example, 585-587
via user authentication, 587-592
biometrics, 591-592
passwords, 588-591
Windows XP, 817-818
in Windows XP, 602-604, 785
security access tokens (Windows XP),
602
security context (Windows XP), 602-603
security descriptor (Windows XP), 603
security domains, 599
security policy, 592
security reference monitor (SRM),
808-809
security-through-obscurity approach, 594
seeds, 590-591
seek, file, 375
seek time (disks), 452, 457

segmentation, 302-305 *
basic method, 302-304
defined, 303
hardware, 304-305
Intel Pentium example, 305-307

segment base, 304

segment limit, 304

segment tables, 304

semantics:
consistency, 401402
copy, 513
immutable-shared-files, 402
session, 402

semaphore(s), 200-204
binary, 201
counting, 201
and deadlocks, 204
defined, 200
implementation, 202-204
implementation of monitors using,

214-215
and starvation, 204
usage of, 201
Windows XP, 790

semiconductor memory, 10

sense key, 515

sequential access (files), 382-383

sequential-access devices, 844

sequential devices, 506, 507

serial ATA (SATA) buses, 453

serializability, 225-227

serial schedule, 226

server(s), 5
cluster, 655
defined, 642
in SSL, 586

server-message-block (SMB), §22-823

server subject (Windows XP), 603

services, operating system, 3941

session hijacking, 561

session layer, 629

session object, 798

session semantics, 402

session space, 797

sharable devices, 506, 507

shares, 176

shared files, immutable, 402

shared libraries, 281-282, 318

shared lock, 378

shared lock mode, 672



shared memory, 96, 318
shared-memory model, 54, 97-99
shared name space, 655
sharing:
load, 169, 612
and paging, 296297
resource, 612
time, 16
shells, 41, 121-123
shell script, 379
shortest-job-first (SJF) scheduling
algorithm, 159-162
shortest-remaining-time-first scheduling,
162
shortest-seek-time (SSTF) scheduling
algorithm, 458-459
short-term scheduler (CPU scheduler),
88, 155
shoulder surfing, 588
signals:
Linux, 773
UNIX, 123, 139-141
signaled state, 220
signal handlers, 139-141
signal-safe functions, 123-124
signatures, 595
signature-based detection, 595
simple operating system structure, 58-59
simple subject (Windows XP), 602
simulations, 183-184
single indirect blocks, 427
single-level directories, 387
single-processor systems, 12-14, 153
single-threaded processes, 127
SJF scheduling algorithm, see shortest-
job-first scheduling algorithm
skeleton, 114
slab allocation, 355-356, 758
Sleeping-Barber Problem, 233
slices, 386
small-area networks, 28
small computer-systems interface, see
under SCSI
SMB, see server-message-block
SMP, sec symmetric multiprocessing
sniffing, 588
social engineering, 562
sockets, 108-111
socket interface, 508
SOC strategy, see system-on-chip strategy
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soft affinity, 170 »

soft error, 463

soft real-time systems, 696, 722

software capability, 549

software interrupts (traps), 502

software objects, 533

Solaris:
scheduling example, 173, 175-177
swap-space management in, 467
synchronization in, 217-219
virtual memory in, 363-365

Solaris 10 Dynamic Tracing Facility, 52

solid-state disks, 24

sorted queue, 772

source-code viruses, 570

source files, 374

sparseness, 300, 318

special-purpose computer systems,
29-31
handheld systems, 30-31
multimedia systems, 30
real-time embedded systems, 29-30

speed, relative, 194

speed of operations:
for 1/0 devices, 506, 507

spinlock, 202

spoofed client identification, 398

spoofing, 599

spool, 514

spooling, 514-515, 844-845

spyware, 564

SRM, see security reference monitor

SSL 3.0, 585-587

SSTF scheduling algorithm, se¢ shortest-
seek-time scheduling algorithm

stable storage, 223, 477478

stack, 47, 82

stack algorithms, 335

stack frame, 566-567

stack inspection, 554

stack-overflow attacks, 565-568

stage (magnetic tape), 480

stalling, 276

standby thread state (Windows XP), 789

starvation, see indefinite blocking

state (of process), 83

stateful file service, 651

state information, 40-401

stateless DFS, 401

stateless file service, 651
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stateless protocols, 727
state restore, 89
state save, 89
static linking, 281-282, 764
static priority, 722
static protection, 534
status information, 55
status register, 498
stealth viruses, 570
storage. See also mass-storage structure
holographic, 480
nonvolatile, 10, 223
secondary, 9, 411
stable, 223
tertiary, 24
utility, 476
volatile, 10, 223
storage-area networks (SANs), 15, 455,
456
storage array, 469
storage management, 22-26
caching, 24-26
I/0 systems, 26
mass-storage management, 23-24
stream ciphers, 579-580
stream head, 520
streaming, 716-717
stream modules, 520
STREAMS mechanism, 520-522
string, reference, 330
stripe set, 818-820
stubs, 114, 281
stub routines, 825
superblock, 414
superblock objects, 419, 765
supervisor mode, se¢ kernel mode
suspended state, 832
sustained bandwidth, 484
swap map, 468
swapper (term), 319
swapping, 17, 89, 282-284, 319
in Linux, 761
paging vs., 466
swap space, 322
swap-space management, 466468
switch architecture, 11
switching:
circuit, 626627
domain, 535

message, 627 ?
packet, 627
symbolic links, 794
symbolic-link objects, 794
symmetric encryption, 579-580
symmetric mode, 15
symmetric multiprocessing (SMP),
13-14, 169, 171-172, 755-756
synchronization, 101-102. See also
process synchronization
synchronous devices, 506, 507
synchronous message passing, 102
synchronous writes, 434
SYSGEN, see system generation
system boot, 71-72
system calls (monitor calls), 7, 43-55
and API, 44-46
for communication, 54-55
for device management, 53
for file management, 53
functioning of, 43—44
for information maintenance, 53-54
for process control, 47-52
system-call firewalls, 600
system-call interface, 46
system-contention scope (SCS), 172
system device, 810
system disk, see boot disk
system files, 389
system generation (SYSGEN), 70-71
system hive, 810
system libraries (Linux), 743, 744
system mode, sce kernel mode
system-on-chip (SOC) strategy, 697, 698
system process (Windows XP), 810
system programs, 55-56
system resource-allocation graph,
249-251
system restore, 810
systems layer, 719
system utilities, 55-56, 743-744
system-wide open-file table, 414

T

table(s), 316
file-allocation, 425
hash, 420
master file, 414



mount, 417, 518
object, 796
open-file, 376
page, 322, 799
per-process open-file, 414
routing, 625
segment, 304
system-wide open-file, 414
tags, 543
tapes, magnetic, 453454, 480
target thread, 139
tasks:
Linux, 750-751
VxWorks, 710
task control blocks, see process control
blocks
TCB (trusted computer base), 601
TCP/IP, see Transmission Control
Protocol/Internet Protocol
TCP sockets, 109
TDI (transport driver interface), 822
telnet, 614
Tenex operating system, 853
terminal concentrators, 523
terminated state, 83
terminated thread state (Windows XP),
789
termination:
cascading, 95
process, 90-95, 266
tertiary-storage, 478488
future technology for, 480
and operating system support,
480483
performance issues with,
484-488
removable disks, 478—480
tapes, 480
tertiary storage devices, 24
text files, 374
text section (of process), 82
theft of service, 560
THE operating system, 846-848
thrashing, 343-348
cause of, 343-345
defined, 343
and page-fault-frequency strategy,
347-348
and working-set model, 345~347
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threads. See also multithreading s
cancellation, thread, 139
components of, 127
functions of, 127-129
idle, 177
kernel, 129
in Linux, 144~146, 750-751
pools, thread, 141-142
and process model, 84-85
scheduling of, 172-173
target, 139
user, 129
in Windows XP, 144, 145, 789-790,

830, 832-833

thread libraries, 131-138
about, 131-132
Java threads, 134-138
Pthreads, 132-134
Win32 threads, 134

thread pool, 832

thread scheduling, 153

thread-specific data, 142

threats, 560. See also program threats

throughput, 157, 720

thunking, 812

tightly coupled systems, see
multiprocessor systems

time:
compile, 278
effective access, 323
effective memory-access, 294
execution, 278
of file creation/use, 375
load, 278
response, 16, 157-158
turnaround, 157
waiting, 157

time-out schemes, 632, 686-687

time quantum, 164

timer:
programmable interval, 509
variable, 20

timers, 509~-510

timer objects, 790

time sharing (multitasking), 16

timestamp-based protocols, 228-230

timestamping, 675-676

timestamps, 665

TLB, see translation look-aside buffer
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TLB miss, 293
TLB reach, 358-359
tokens, 628, 668
token passing, 628, 668
top half interrupt service routines, 755
topology, network, 620-622
Torvalds, Linus, 737
trace tapes, 184
tracks, disk, 452
traditional computing, 31-32
transactions, 222. See also atomic
transactions
defined, 768
in Linux, 768-769
in log-structured file systems,
437-438
Transarc DFS, 654
transfer rate (disks), 452, 453
transition thread state (Windows XP), 789
transitive trust, 828
translation coordinator, 669
translation look-aside buffer (TLB), 293,
800
transmission control protocol (TCP), 631
Transmission Control Protocol/Internet
Protocol (TCP/IP), 823
transparency, 633-634, 642, 643
transport driver interface (TDI), 822
transport layer, 629
transport-layer protocol (TCP), 584
traps, 18, 321, 502
trap doors, 564-565
tree-structured directories, 389-391
triple DES, 579
triple indirect blocks, 427
Tripwire file system, 597-598
Trojan horses, 563-564
trusted computer base (TCB), 601
trust relationships, 828
tunneling viruses, 571
turnaround time, 157
turnstiles, 219
two-factor authentication, 591
twofish algorithm, 579
two-level directories, 388-389
two-phase commit (2PC) protocol,
669-672
two-phase locking protocol, 228
two tuple, 303
type safety (Java), 555

u 5

UDP (user datagram protocol), 631
UDP sockets, 109
UFD (user file directory), 388
UFS (UNIX file system), 413
UI, see user interface
unbounded capacity (of queue), 102
UNC (uniform naming convention),
824
unformatted disk space, 386
unicasting, 725
UNICODE, 787
unified buffer cache, 433, 434
unified virtual memory, 433
uniform naming convention (UNC),
824
universal serial buses (USBs), 453
UNIX file system (UFS), 413
UNIX operating system:
consistency semantics for, 401
domain switching in, 535-536
and Linux, 737
permissions in, 406
shell and history feature (project),
121125
signals in, 123, 139-141
swapping in, 284
unreliability, 626
unreliable communications, 686-687
upcalls, 143
upcall handler, 143
USBs, see universal serial buses
used objects, 356, 759
users, 4-5, 397-398
user accounts, 602
user authentication, 587-592
with biometrics, 591-592
with passwords, 588-591
user datagram protocol (UDP), 631
user-defined signal handlers, 140
user file directory (UFD), 388
user identifiers (user IDs), 27
effective, 27
for files, 375
user interface (UI), 4043
user mobility, 440
user mode, 18
user programs (user tasks), 81, 762-763
user rights (Linux), 778



user threads, 129
utility storage, 476
utilization, 840

v

VACB, see virtual address control block
VADs (virtual address descriptors),
802
valid-invalid bit, 295
variable class, 177
variables, automatic, 566
variable timer, 20
VDM, see virtual DOS machine
vector programs, 573
vfork() (virtual memory fork), 327
VES, see virtual file system
victim frames, 329
views, 798
virtual address, 279
virtual address control block (VACB),
806, 807
virtual address descriptors (VADs), 802
virtual address space, 317, 760-761
virtual DOS machine (VDM), 811-812
virtual file system (VES), 417-419,
765-766
virtual machines, 64-69
basic idea of, 64
benefits of, 66
implementation of, 65-66
Java Virtual Machine as example
of, 68
VMware as example of, 67
virtual memory, 17, 315-318
and copy-on-write technique,
325-327
demand paging for conserving,
319--325
basic mechanism, 320-322
with inverted page tables,
359-360
and I/0 interlock, 361-362
and page size, 357-358
and performance, 323-325
and prepaging, 357
and program structure,
360-361
pure demand paging, 322
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and restarting instructidns,
322-323
and TLB reach, 358-359
direct virtual memory access, 504
and frame allocation, 340-343
equal allocation, 341
global vs. local allocation,
342-343
proportional allocation,
341-342
kernel, 762
and kernel memory allocation,
353-356
in Linux, 759-762
and memory mapping, 348-353
basic mechanism, 348-350
I/0, memory-mapped, 353
in Win32 API, 350-353
network, 647
page replacement for conserving,
327-339
and application performance,
339
basic mechanism, 328-331
counting-based page
replacement, 338
FIFO page replacement,
331-333
LRU-approximation page
replacement, 336-338
LRU page replacement,
334-336
optimal page replacement,
332-334
and page-buffering
algorithms, 338-339
separation of logical memory from
physical memory by, 317
size of, 316
in Solaris, 363-365
and thrashing, 343-348
cause, 343-345
page-fault-frequency strategy,
347-348 -
working-set model, 345-347
unified, 433
in Windows XT, 363
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Part One

AN operating systerm acts as an intermediary between the user of a
computer and the computer hardware. The purpose of an operating
system is to provide an environment in which a user can execute
programs in a convenient and efficient manner.

An operating system is software that manages the computer hard-
ware. The hardware must provide appropriate mechanisms to ensure the
correct operation of the computer system and to prevent user programs
from interfering with the proper operation of the system.

Internally, operating systems vary greatly in their makeup, since they
are organized along many different lines. The design of a new operating
system is a major task. it is important that the goals of the system be well
defined before the design begins. These goals form the basis for choices
among various algorithms and strategies.

Because an operating system s large and complex, it must be created
piece by piece. Each of these pieces should be a well delineated portion
of the system, with carefully defined inputs, outputs, and functions.
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An operating system is a program that manages the computer hardware. It
also provides a basis for application programs and acts as an intermediary
between the computer user and the computer hardware. An amazing aspect
of operating systems is how varied they are in accomplishing these tasks.
Mainframe operating systems are designed primarily to optimize utilization
of hardware. Personal computer (PC) operating systems support complex
games, business applications, and everything in between. Operating systems
for handheld computers are designed to provide an environment in which a
user can easily interface with the computer to execute programs. Thus, some
operating systems are designed to be convenient, others to be efficient, and others
some combination of the two.

Before we can explore the details of computer system operation, we need
to know something about system structure. We begin by discussing the basic
functions of system startup, 1/0, and storage. We also describe the basic
computer architecture that makes it possible to write a functional operating
system.

Because an operating system is large and complex, it must be created
piece by piece. Each of these pieces should be a well-delineated portion of the
system, with carefully defined inputs, outputs, and functions. In this chapter we
provide a general overview of the major components of an operating system.

CHAPTER OBJECTIVES

» To provide a grand tour of the major operating systems components.
¢ To provide coverage of basic computer system organization.

What Operating Systems Do

We begin our discussion by looking at the operating system’s role in the
overall computer system. A computer system can be divided roughly into
four components: the hardware, the operating system, the application programs,
and the users (Figure 1.1).
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Figure 1.1 Abstract view of the components of a computer system.

The hardware—the central processing unit (CPU), the memory, and the
input/output (/0) devices—provides the basic computing resources for the
system. The application programs—such as word processors, spreadsheets,
compilers, and web browsers—define the ways in which these resources are
used to solve users’ computing problems. The operating system controls and
coordinates the use of the hardware among the various application programs
for the various users.

We can also view a computer system as consisting of hardware, software,
and data. The operating system provides the means for proper use of these
resources in the operation of the computer system. An operating system is
similar to a government. Like a government, it performs no useful function by
itself. It simply provides an environment within which other programs can do
useful work.

To understand more fully the operating system’s role, we next explore
operating systems from two viewpoints: that of the user and that of the system.

1.1.1 User View

The user’s view of the computer varies according to the interface being
used. Most computer users sit in front of a PC, consisting of a monitor,

keyboard, mouse, and system unit. Such a system is designed for one user . .

to monopolize its resources. The goal is to maximize the work (or play)
that the user is performing. In this case, the operating system is designed
mostly for ease of use, with some attention paid to performance and none
paid to resource utilization—how various hardware and software resources
are shared. Performance is, of course, important to the user; but rather than
resource utilization, such systems are optimized for the single-user experience.



1.1 What Operating Systems Do 5

In other cases, a user sits at a terminal connected to a mainframe or
minicomputer. Other users are accessing the same computer through other
terminals. These users share resources and may exchange information. The
operating system in such cases is designed to maximize resource utilization—
to assure that all available CPU time, memory, and 1/0 are used efficiently and
that no individual user takes more than her fair share.

In still other cases, users sit at workstations connected to networks of
other workstations and servers. These users have dedicated resources at their
disposal, but they also share resources such as networking and servers—file,
compute, and print servers. Therefore, their operating system is designed to
compromise between individual usability and resource utilization.

Recently, many varieties of handheld computers have come into fashion.
Most of these devices are standalone units for individual users. Some are
connected to networks, either directly by wire or (more often) through wireless
modems and networking. Because of power, speed, and interface limitations,
they perform relatively few remote operations. Their operating systems are
designed mostly for individual usability, but performance per amount of
battery life is important as well.

Some computers have little or no user view. For example, embedded
computers in home devices and automobiles may have numeric keypads and
may turn indicator lights on or off to show status, but they and their operating
systems are designed primarily to run without user intervention.

1.1.2 System View

From the computer’s point of view, the operating system is the program
most intimately involved with the hardware. In this context, we can view
an operating system as a resource allocator. A computer system has many
resources that may be required to solve a problem: CPU time, memory space,
file-storage space, I/0 devices, and so on. The operating system acts as the
manager of these resources. Facing numerous and possibly conflicting requests
for resources, the operating system must decide how to allocate them to specific
programs and users so that it can operate the computer system efficiently and
fairly. As we have seen, resource allocation is especially important where many
users access the same mainframe or minicomputer.

A slightly different view of an operating system emphasizes the need to
control the various 1/0 devices and user programs. An operating system is a
control program. A control program manages the execution of user programs
to prevent errors and improper use of the computer. It is especially concerned
with the operation and control of 1/0 devices.

1.1.3 Defining Operating Systems

We have looked at the operating system’s role from the views of the user
and of the system. How, though, can we define what an operating system
is? In general, we have no completely adequate definition of an operating
system. Operating systems exist because they offer a reasonable way to solve
the problem of creating a usable computing system. The fundamental goal
of computer systems is to execute user programs and to make solving user
problems easier. Toward this goal, computer hardware is constructed. Since
bare hardware alone is not particularly easy to use, application programs are
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developed. These programs require certain common operations, such as those
controlling the I/0 devices. The common functions of controlling and allocating
resources are then brought together into one piece of software: the operating
system.

Inaddition, we have no universally accepted definition of what is part of the
operating system. A simple viewpoint is that it includes everything a vendor
ships when you order “the operating system.” The features included, however,
vary greatly across systems. Some systems take up less than 1 megabyte of
space and lack even a full-screen editor, whereas others require gigabytes of
space and are entirely based on graphical windowing systems. (A kilobyte, or
KB, is 1,024 bytes; a megabyte, or MB, is 1,024 bytes; and a gigabyte, or GB, is
1,024% bytes. Computer manufacturers often round off these numbers and say
that a megabyte is 1 million bytes and a gigabyte is 1 billion bytes.) A more
common definition is that the operating system is the one program running
at all times on the computer (usually called the kernel), with all else being
systems programs and application programs. This last definition is the one
that we generally follow.

The matter of what constitutes an operating system has become increas-
ingly important. In 1998, the United States Department of Justice filed suit
against Microsoft, in essence claiming that Microsoft included too much func-
tionality in its operating systems and thus prevented application vendors from
competing. For example, a web browser was an integral part of the operating
system. As a result, Microsoft was found guilty of using its operating system
monopoly to limit competition.

Computer-System Organization

Before we can explore the details of how computer systems operate, we need
a general knowledge of the structure of a computer system. In this section, we
look at several parts of this structure to round out our background knowledge.
The section is mostly concerned with computer-system organization, so you
can skim or skip it if you already understand the concepts.

1.2.1 Computer-System Operation

A modern general-purpose computer system consists of one or more CPUs
and a number of device controllers connected through a common bus that
provides access to shared memory (Figure 1.2). Each device controller is in
charge of a specific type of device (for example, disk drives, audio devices, and
video displays). The CPU and the device controllers can execute concurrently,
competing for memory cycles. To ensure orderly access to the shared memory,
amemory controller is provided whose function is to synchronize access to the
memory. -

For a computer to start running—for instance, when it is powered
up or rebooted—it needs to have an initial program to run. This initial
program, or bootstrap program, tends to be simple. Typically, it is stored
in read-only memory (ROM) or electrically erasable programmable read-only
memory (EEPROM), known by the general term firmware, within the computer
hardware. It initializes all aspects of the system, from CPU registers to device
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Figure 1.2 A modern computer system.

controllers to memory contents. The bootstrap program must know how to
load the operating system and to start executing that system. To accomplish this
goal, the bootstrap program must locate and load into memory the operating-
system kernel. The operating system then starts executing the first process,
such as “Init,”" and waits for some event to occur.

The occurrence of an event is usually signaled by an interrupt from either
the hardware or the software. Hardware may trigger an interrupt at any time
by sending a signal to the CPU, usually by way of the system bus. Software
may trigger an interrupt by executing a special operation called a system call
(also called a monitor call).

When the CPU is interrupted, it stops what it is doing and immediately
transfers execution to a fixed location. The fixed location usually contains
the starting address where the service routine for the interrupt is located.
The interrupt service routine executes; on completion, the CPU resumes the
interrupted computation. A time line of this operation is shown in Figure 1.3.

Interrupts are an important part of a computer architecture. Each computer
design has its own interrupt mechanism, but several functions are common.
The interrupt must transfer control to the appropriate interrupt service routine.

CPU  user
process
executing

I/O interrupt |—| L—I

processing

110 idle
device

transferring

o] transfer /O transfer
request done request done

Figure 1.3 Interrupt time line for a single process doing output.
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The straightforward method for handling this transfer would be to invoke a
generic routine to examine the interrupt information; the routine, in turn,
would call the interrupt-specific handler. However, interrupts must be handled
quickly. Since only a predefined number of interrupts is possible, a table of
pointers to interrupt routines can be used instead to provide the necessary
speed. The interrupt routine is called indirectly through the table, with no
intermediate routine needed. Generally, the table of pointers is stored in low
memory (the first 100 or so locations). These locations hold the addresses of
the interrupt service routines for the various devices. This array, or interrupt
vector, of addresses is then indexed by a unique device number, given with
the interrupt request, to provide the address of the interrupt service routine for
the interrupting device. Operating systems as different as Windows and UNIX
dispatch interrupts in this manner.

The interrupt architecture must also save the address of the interrupted
instruction. Many old designs simply stored the interrupt address in a
fixed location or in a location indexed by the device number. More recent
architectures store the return address on the system stack. If the interrupt
routine needs to modify the processor state—for instance, by modifying
register values—it must explicitly save the current state and then restore that
state before returning. After the interrupt is serviced, the saved return address
is loaded into the program counter, and the interrupted computation resumes
as though the interrupt had not occurred.

1.2.2 Storage Structure

Computer programs must be in main memory (also called random-access
memory or RAM) to be executed. Main memory is the only large storage area
(millions to billions of bytes) that the processor can access directly. It commonly
is implemented in a semiconductor technology called dynamic random-access
memory (DRAM), which forms an array of memory words. Each word has its
own address. Interaction is achieved through a sequence of load or store
instructions to specific memory addresses. The 1load instruction moves a word
from main memory to an internal register within the CPU, whereas the store
instruction moves the content of a register to main memory. Aside from explicit
loads and stores, the CPU automatically loads instructions from main memory
for execution.

A typical instruction—execution cycle, as executed on a system with a von
Neumann architecture, first fetches an instruction from memory and stores
that instruction in the instruction register. The instruction is then decoded
and may cause operands to be fetched from memory and stored in some
internal register. After the instruction on the operands has been executed, the
result may be stored back in memory. Notice that the memory unit sees only
a stream of memory addresses; it does not know how they are generated (by
the instruction counter, indexing, indirection, literal addresses, or some other -
means) or what they are for (instructions or data). Accordingly, we can ignore
how a memory address is generated by a program. We are interested only in
the sequence of memory addresses generated by the running program.

Ideally, we want the programs and data to reside in main memory
permanently. This arrangement usually is not possible for the following two
reasons:
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1. Main memory is usually too small to store all needed programs and data
permanently.

2. Main memory is a volatile storage device that loses its contents when
power is turned off or otherwise lost.

Thus, most computer systems provide secondary storage as an extension
of main memory. The main requirement for secondary storage is that it be able
to hold large quantities of data permanently.

The most common secondary-storage device is a magnetic disk, which
provides storage for both programs and data. Most programs (web browsers,
compilers, word processors, spreadsheets, and so on) are stored on a disk until
they are loaded into memory. Many programs then use the disk as both a source
and a destination of the information for their processing. Hence, the proper
management of disk storage is of central importance to a computer system, as
we discuss in Chapter 12.

In a larger sense, however, the storage structure that we have described —
consisting of registers, main memory, and magnetic disks—is only one of many
possible storage systems. Others include cache memory, CD-ROM, magnetic
tapes, and so on. Each storage system provides the basic functions of storing
a datum and of holding that datum until it is retrieved at a later time. The
main differences among the various storage systems lie in speed, cost, size,
and volatility.

The wide variety of storage systems in a computer system can be organized
in a hierarchy (Figure 1.4) according to speed and cost. The higher levels are
expensive, but they are fast. As we move down the hierarchy, the cost per bit

\ grxe,rtic;-iapes;w inimnnn

Figure 1.4 Storage-device hierarchy.
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generally decreases, whereas the access time generally increases. This trade-off
is reasonable; if a given storage system were both faster and less expensive
than another—other properties being the same—then there would be no
reason to use the slower, more expensive memory. In fact, many early storage
devices, including paper tape and core memories, are relegated to museums
now that magnetic tape and semiconductor memory have become faster and
cheaper. The top four levels of memory in Figure 1.4 may be constructed using
semiconductor memory.

In addition to differing in speed and cost, the various storage systems
are either volatile or nonvolatile. As mentioned earlier, volatile storage loses
its contents when the power to the device is removed. In the absence of
expensive battery and generator backup systems, data must be written to
nonvolatile storage for safekeeping. In the hierarchy shown in Figure 1.4, the
storage systems above the electronic disk are volatile, whereas those below
are nonvolatile. An electronic disk can be designed to be either volatile or
nonvolatile. During normal operation, the electronic disk stores data in a
large DRAM array, which is volatile. But many electronic-disk devices contain
a hidden magnetic hard disk and a battery for backup power. If external
power is interrupted, the electronic-disk controller copies the data from RAM
to the magnetic disk. When external power is restored, the controller copies
the data back into the RAM. Another form of electronic disk is flash memory,
which is popular in cameras and personal digital assistants (PDAs), in robots,
and increasingly as removable storage on general-purpose computers. Flash
memory is slower than DRAM but needs no power to retain its contents. Another
form of nonvolatile storage is NVRAM, which is DRAM with battery backup
power. This memory can be as fast as DRAM but has a limited duration in
which it is nonvolatile.

The design of a complete memory system must balance all the factors just
discussed: It must use only as much expensive memory as necessary while
providing as much inexpensive, nonvolatile memory as possible. Caches can
be installed to improve performance where a large access-time or transfer-rate
disparity exists between two components.

1.2.3 1/O Structure

Storage is only one of many types of 1/0 devices within a computer. A large
portion of operating system code is dedicated to managing 1/0, both because
of its importance to the reliability and performance of a system and because of
the varying nature of the devices. Therefore, we now provide an overview of
I/0.

A general-purpose computer system consists of CPUs and multiple device
controllers that are connected through a common bus. Each device controller
is in charge of a specific type of device. Depending on the controller, there may .
be more than one attached device. For instance, seven or more devices can be
attached to the small computer-systems interface (SCSD controller. A device
controller maintains some local buffer storage and a set of special-purpose
registers. The device controller is responsible for moving the data between
the peripheral devices that it controls and its local buffer storage. Typically,
operating systems have a device driver for each device controller. This device
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Figure 1.5 How a modern computer system works.

driver understands the device controller and presents a uniform interface to
the device to the rest of the operating system.

To start an I/0 operation, the device driver loads the appropriate registers
within the device controller. The device controller, in turn, examines the
contents of these registers to determine what action to take (such as “read
a character from the keyboard”). The controller starts the transfer of data from
the device to its local buffer. Once the transfer of data is complete, the device
controller informs the device driver via an interrupt that it has finished its
operation. The device driver then returns control to the operating system,
possibly returning the data or a pointer to the data if the operation was a read.
For other operations, the device driver returns status information.

This form of interrupt-driven 1/0 is fine for moving small amounts of data
but can produce high overhead when used for bulk data movement such as disk
1/0. To solve this problem, direct memory access (DMA) is used. After setting
up buffers, pointers, and counters for the I/0 device, the device controller
transfers an entire block of data directly to or from its own buffer storage to
memory, with no intervention by the CPU. Only one interrupt is generated per
block, to tell the device driver that the operation has completed, rather than
the one interrupt per byte generated for low-speed devices. While the device
controller is performing these operations, the CPU is available to accomplish
other work. )

Some high-end systems use switch rather than bus architecture. On these
systems, multiple components can talk to other components concurrently,
rather than competing for cycles on a shared bus. In this case, DMA is even
more effective. Figure 1.5 shows the interplay of all components of a computer
system.
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In Section 1.2 we introduced the general structure of a typical computer system.
A computer system may be organized in a number of different ways, which we
can categorize roughly according to the number of general-purpose processors
used.

1.3.1 Single-Processor Systems

Most systems use a single processor. The variety of single-processor systems
may be surprising, however, since these systems range from PDAs through
mainframes. On a single-processor system, there is one main CPU capable
of executing a general-purpose instruction set, including instructions from
user processes. Almost all systems have other special-purpose processors as
well. They may come in the form of device-specific processors, such as disk,
keyboard, and graphics controllers; or, on mainframes, they may come in the
form of more general-purpose processors, such as I/0 processors that move
data rapidly among the components of the system.

All of these special-purpose processors run a limited instruction set and
do not run user processes. Sometimes they are managed by the operating
system, in that the operating system sends them information about their next
task and monitors their status. For example, a disk-controller microprocessor
receives a sequence of requests from the main CPU and implements its own disk
queue and scheduling algorithm. This arrangement relieves the main CPU of
the overhead of disk scheduling. PCs contain a microprocessor in the keyboard
to convert the keystrokes into codes to be sent to the CPU. In other systems
or circumstances, special-purpose processors are low-level components built
into the hardware. The operating system cannot communicate with these
processors; they do their jobs autonomously. The use of special-purpose
microprocessors is common and does not turn a single-processor system into
a multiprocessor. If there is only one general-purpose CPU, then the system is
a single-processor system.

1.3.2 Multiprocessor Systems

Although single-processor systems are most common, multiprocessor systems
(also known as parallel systems or tightly coupled systems) are growing
in importance. Such systems have two or more processors in close commu-
nication, sharing the computer bus and sometimes the clock, memory, and
peripheral devices.

Multiprocessor systems have three main advantages:

1. Increased throughput. By increasing the number of processors, we expect
to get more work done in less time. The speed-up ratio with N processors
is not N, however; rather, it is less than N. When multiple processors
cooperate on a task, a certain amount of overhead is incurred in keeping
all the parts working correctly. This overhead, plus contention for shared
resources, lowers the expected gain from additional processors. Similarly,
N programmers working closely together do not produce N times the
amount of work a single programmer would produce.
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2. Economy of scale. Multiprocessor systems can cost less than equivalent
multiple single-processor systems, because they can share peripherals,
mass storage, and power supplies. If several programs operate on the
same set of data, it is cheaper to store those data on one disk and to have
all the processors share them than to have many computers with local
disks and many copies of the data.

3. Increased reliability. If functions can be distributed properly among
several processors, then the failure of one processor will not halt the
system, only slow it down. If we have ten processors and one fails, then
each of the remaining nine processors can pick up a share of the work of
the failed processor. Thus, the entire system runs only 10 percent slower,
rather than failing altogether.

Increased reliability of a computer system is crucial in many applications.
The ability to continue providing service proportional to the level of surviving
hardware is called graceful degradation. Some systems go beyond graceful
degradation and are called fault tolerant, because they can suffer a failure of
any single component and still continue operation. Note that fault tolerance
requires a mechanism to allow the failure to be detected, diagnosed, and, if
possible, corrected. The HP NonStop system (formerly Tandem) system uses
both hardware and software duplication to ensure continued operation despite
faults. The system consists of multiple pairs of CPUs, working in lockstep. Both
processors in the pair execute each instruction and compare the results. If the
results differ, then one CPU of the pair is at fault, and both are halted. The
process that was being executed is then moved to another pair of CPUs, and the
instruction that failed is restarted. This solution is expensive, since it involves
special hardware and considerable hardware duplication.

The multiple-processor systems in use today are of two types. Some
systems use asymmetric multiprocessing, in which each processor is assigned
a specific task. A master processor controls the system; the other processors
either look to the master for instruction or have predefined tasks. This scheme
defines a master—slave relationship. The master processor schedules and
allocates work to the slave processors.

The most common systems use symmetric multiprocessing (SMP), in
which each processor performs all tasks within the operating system. SMP
means that all processors are peers; no master—slave relationship exists
between processors. Figure 1.6 illustrates a typical SMP architecture. An
example of the SMP system is Solaris, a commercial version of UNIX designed
by Sun Microsystems. A Solaris system can be configured to employ dozens of
processors, all running Solaris. The benefit of this model is that many processes

CPU cPU f

memory

Figure 1.6 Symmetric multiprocessing architecture.
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can run simultaneously —N processes can run if there are N CPUs—without
causing a significant deterioration of performance. However, we must carefully
control 170 to ensure that the data reach the appropriate processor. Also, since
the CPUs are separate, one may be sitting idle while another is overloaded,
resulting in inefficiencies. These inefficiencies can be avoided if the processors
share certain data structures. A multiprocessor system of this form will allow
processes and resources—such as memory—to be shared dynamically among
the various processors and can lower the variance among the processors. Such
a system must be written carefully, as we shall see in Chapter 6. Virtually all
modern operating systems—including Windows, Windows XP, Mac OS X, and
Linux—now provide support for SMP.

The difference between symmetric and asymmetric multiprocessing may
result from either hardware or software. Special hardware can differentiate the
multiple processors, or the software can be written to allow only one master and
multiple slaves. For instance, Sun’s operating system SunOS Version 4 provided
asymmetric multiprocessing, whereas Version 5 (Solaris) is symmetric on the
same hardware.

A recent trend in CPU design is to include multiple compute cores on
a single chip. In essence, these are multiprocessor chips. Two-way chips are
becoming mainstream, while N-way chips are going to be common in high-end
systems. Aside from architectural considerations such as cache, memory, and
bus contention, these multi-core CPUs look to the operating system just as N
standard processors.

Lastly, blade servers are a recent development in which multiple processor
boards, 1/0 boards, and networking boards are placed in the same chassis.
The difference between these and traditional multiprocessor systems is that
each blade-processor board boots independently and runs its own operating
system. Some blade-server boards are multiprocessor as well, which blurs the
lines between types of computers. In essence, those servers consist of multiple
independent multiprocessor systems.

1.3.3 Clustered Systems

Another type of multiple-CPU system is the clustered system. Like multipro-
cessor systems, clustered systems gather together multiple CPUs to accomplish
computational work. Clustered systems differ from multiprocessor systems,
however, in that they are composed of two or more individual systems
coupled together. The definition of the term clustered is not concrete; many
commercial packages wrestle with what a clustered system is and why one
form is better than another. The generally accepted definition is that clustered
computers share storage and are closely linked via a local-area network (LAN)
(as described in Section 1.10) or a faster interconnect such as InfiniBand.

Clustering is usually used to provide high-availability service; that is,
service will continue even if one or more systems in the cluster fail. High
availability is generally obtained by adding a level of redundancy in the
system. A layer of cluster software runs on the cluster nodes. Each node can
monitor one or more of the others (over the LAN). If the monitored machine
fails, the monitoring machine can take ownership of its storage and restart the
applications that were running on the failed machine. The users and clients of
the applications see only a brief interruption of service.
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Clustering can be structured asymmetncallv or symmetrically. In asym-
metric clustermg one machine is in hot-standby mode while the other is
running the applications. The hot-standby host machine does nothing but
monitor the active server. If that server fails, the hot-standby host becomes the
active server. In symmetric mode, two or more hosts are running applications,
and are monitoring each other. This mode is obviously more efficient, as it uses
all of the available hardware. It does require that more than one application be
available to run.

Other forms of clusters include parallel clusters and clustering over a
wide-area network (WAN) (as described in Section 1.10). Parallel clusters allow
multiple hosts to access the same data on the shared storage. Because most
operating systems lack support for simultaneous data access by multiple hosts,
parallel clusters are usually accomplished by use of special versions of software
and special releases of applications. For example, Oracle Parallel Server is a
version of Oracle’s database that has been designed to run on a parallel cluster.
Each machine runs Oracle, and a layer of software tracks access to the shared
disk. Each machine has full access to all data in the database. To provide this
shared access to data, the system must also supply access control and locking
to ensure that no conflicting operations occur. This function, commonly known
as a distributed lock manager (DLM), is included in some cluster technology.

Cluster technology is changing rapidly. Some cluster products support
dozens of systems in a cluster, as well as clustered nodes that are separated
by miles. Many of these improvements are made possible by storage-area
networks (SANSs), as described in Section 12.3.3, which allow many systems
to attach to a pool of storage. If the applications and their data are stored on
the SAN, then the cluster software can assign the application to run on any
host that is attached to the SAN. If the host fails, then any other host can take
over. In a database cluster, dozens of hosts can share the same database, greatly
increasing performance and reliability.

Operating-System Structure

Now that we have discussed basic information about computer-system orga-
nization and architecture, we are ready to talk about operating systems.
An operating system provides the environment within which programs are
executed. Internally, operating systems vary greatly in their makeup, since
they are organized along many different lines. There are, however, many
commonalities, which we consider in this section.

One of the most important aspects of operating systems is the ability to
multiprogram. A single user cannot, in general, keep either the CPU or the
I/0 devices busy at all times. Multiprogramming increases CPU utilization by
organizing jobs (code and data) so that the CPU always has one to execute.

The idea is as follows: The operating system keeps several jobs in memory
simultaneously (Figure 1.7). This set of jobs can be a subset of the jobs kept in
the job pool—which contains all jobs that enter the system —since the number
of jobs that can be kept simultaneously in memory is usually smaller than
the number of jobs that can be kept in the job pool. The operating system
picks and begins to execute one of the jobs in memory. Eventually, the job
may have to wait for some task, such as an I/0 operation, to complete. In a
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non-multiprogrammed system, the CPU would sit idle. In a multiprogrammed
system, the operating system simply switches to, and executes, another job.
When that job needs to wait, the CPU is switched to another job, and so on.
Eventually, the first job finishes waiting and gets the CPU back. As long as at
least one job needs to execute, the CPU is never idle.

This idea is common in other life situations. A lawyer does not work for
only one client at a time, for example. While one case is waiting to go to trial
or have papers typed, the lawyer can work on another case. If he has enough
clients, the lawyer will never be idle for lack of work. (Idle lawyers tend to
become politicians, so there is a certain social value in keeping lawyers busy.)

Multiprogrammed systems provide an environment in which the various
system resources (for example, CPU, memory, and peripheral devices) are
utilized effectively, but they do not provide for user interaction with the
computer system. Time sharing (or multitasking) is a logical extension of
multiprogramming. In time-sharing systems, the CPU executes multiple jobs
by switching among them, but the switches occur so frequently that the users
can interact with each program while it is running.

Time sharing requires an interactive (or hands-on) computer system,
which provides direct communication between the user and the system. The
user gives instructions to the operating system or to a program directly, using a
input device such as a keyboard or a mouse, and waits for immediate results on
an output device. Accordingly, the response time should be short—typically
less than one second.

A time-shared operating system allows many users to share the computer
simultaneously. Since each action or command in a time-shared system tends
tobe short, only a little CPU time is needed for each user. As the system switches -
rapidly from one user to the next, each user is given the impression that the
entire computer system is dedicated to his use, even though it is being shared
among many users.

A time-shared operating system uses CPU scheduling and multiprogram-
ming to provide each user with a small portion of a time-shared computer.
Each user has at least one separate program in memory. A program loaded into
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memory and executing is called a process. When a process executes, it typically
executes for only a short time before it either finishes or needs to perform 1/0.
1/0 may be interactive; that is, output goes to a display for the user, and input
comes from a user keyboard, mouse, or other device. Since interactive 1/0
typically runs at “people speeds,” it may take a long time to complete. Input,
for example, may be bounded by the user’s typing speed; seven characters per
second is fast for people but incredibly slow for computers. Rather than let
the CPU sit idle as this interactive input takes place, the operating system will
rapidly switch the CPU to the program of some other user.

Time-sharing and multiprogramming require several jobs to be kept
simultaneously in memory. Since in general main memory is too small to
accommodate all jobs, the jobs are kept initially on the disk in the job pool.
This pool consists of all processes residing on disk awaiting allocation of main
memory. If several jobs are ready to be brought into memory, and if there is
not enough room for all of them, then the system must choose among them.
Making this decision is job scheduling, which is discussed in Chapter 5. When
the operating system selects a job from the job pool, it loads that job into
memory for execution. Having several programs in memory at the same time
requires some form of memory management, which is covered in Chapters 8
and 9. In addition, if several jobs are ready to run at the same time, the system
must choose among them. Making this decision is CPU scheduling, which is
discussed in Chapter 5. Finally, running multiple jobs concurrently requires
that their ability to affect one another be limited in all phases of the operating
system, including process scheduling, disk storage, and memory management.
These considerations are discussed throughout the text.

In a time-sharing system, the operating system must ensure reasonable
response time, which is sometimes accomplished through swapping, where
processes are swapped in and out of main memory to the disk. A more common
method for achieving this goal is virtual memory, a technique that allows
the execution of a process that is not completely in memory (Chapter 9).
The main advantage of the virtual-memory scheme is that it enables users
to run programs that are larger than actual physical memory. Further, it
abstracts main memory into alarge, uniform array of storage, separating logical
memory as viewed by the user from physical memory. This arrangement frees
programmers from concern over memory-storage limitations.

Time-sharing systems must also provide a file system (Chapters 10 and 11).
The file system resides on a collection of disks; hence, disk management must
be provided (Chapter 12). Also, time-sharing systems provide a mechanism for
protecting resources from inappropriate use (Chapter 14). To ensure orderly
execution, the system must provide mechanisms for job synchronization and
communication (Chapter 6), and it may ensure that jobs do not get stuck in a
deadlock, forever waiting for one another (Chapter 7).

Operating-System Operations

As mentioned earlier, modern operating systems are interrupt driven. If there
are no processes to execute, no 1/0 devices to service, and no users to whom
to respond, an operating system will sit quietly, waiting for something to
happen. Events are almost always signaled by the occurrence of an interrupt
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or a trap. A trap (or an exception) is a software-generated interrupt caused
either by an error (for example, division by zero or invalid memory access)
or by a specific request from a user program that an operating-system service
be performed. The interrupt-driven nature of an operating system defines
that system’s general structure. For each type of interrupt, separate segments
of code in the operating system determine what action should be taken. An
interrupt service routine is provided that is responsible for dealing with the
interrupt.

Since the operating system and the users share the hardware and software
resources of the computer system, we need to make sure that an error in a user
program could cause problems only for the one program that was running.
With sharing, many processes could be adversely affected by a bug in one
program. For example, if a process gets stuck in an infinite loop, this loop could
prevent the correct operation of many other processes. More subtle errors can
occur in a multiprogramming system, where one erroneous program might
modify another program, the data of another program, or even the operating
system itself.

Without protection against these sorts of errors, either the computer must
execute only one process at a time or all output must be suspect. A properly
designed operating system must ensure that an incorrect (or malicious)
program cannot cause other programs to execute incorrectly.

1.5.1 Dual-Mode Operation

In order to ensure the proper execution of the operating system, we must be
able to distinguish between the execution of operating-system code and user-
defined code. The approach taken by most computer systems is to provide
hardware support that allows us to differentiate among various modes of
execution.

At the very least, we need two separate modes of operation: user mode
and kernel mode (also called supervisor mode, system mode, or privileged
mode). A bit, called the mode bit, is added to the hardware of the computer to
indicate the current mode: kernel (0) or user (1). With the mode bit, we are able
to distinguish between a task that is executed on behalf of the operating system
and one that is executed on behalf of the user. When the computer system is
executing on behalf of a user application, the system is in user mode. However,
when a user application requests a service from the operating system (via a
system call), it must transition from user to kernel mode to fulfill the request.
This is shown in Figure 1.8. As we shall see, this architectural enhancement is
useful for many other aspects of system operation as well.

At system boot time, the hardware starts in kernel mode. The operating
system is then loaded and starts user applications in user mode. Whenever a
trap or interrupt occurs, the hardware switches from user mode to kernel mode
(that is, changes the state of the mode bit to 0). Thus, whenever the operating
system gains control of the computer, it is in kernel mode. The system always
switches to user mode (by setting the mode bit to 1) before passing control to
a user program.

The dual mode of operation provides us with the means for protecting the
operating system from errant users—and errant users from one another. We
accomplish this protection by designating some of the machine instructions that
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Figure 1.8 Transition from user to kernel mode.

may cause harm as privileged instructions. The hardware allows privileged
instructions to be executed only in kernel mode. If an attempt is made to
execute a privileged instruction in user mode, the hardware does not execute
the instruction but rather treats it as illegal and traps it to the operating system.

The instruction to switch to user mode is an example of a privileged
instruction. Some other examples include 1/0 control, timer management, and
interrupt management. As we shall see throughout the text, there are many
additional privileged instructions.

We can now see the life cycle of instruction execution in a computer system.
Initial control is within the operating system, where instructions are executed
in kernel mode. When control is given to a user application, the mode is set to
user mode. Eventually, control is switched back to the operating system via an
interrupt, a trap, or a system call.

System calls provide the means for a user program to ask the operating
system to perform tasks reserved for the operating system on the user
program’s behalf. A system call is invoked in a variety of ways, depending
on the functionality provided by the underlying processor. In all forms, it is the
method used by a process to request action by the operating system. A system
call usually takes the form of a trap to a specific location in the interrupt vector.
This trap can be executed by a generic trap instruction, although some systems
(such as the MIPS R2000 family) have a specific syscall instruction.

When a system call is executed, it is treated by the hardware as a software
interrupt. Control passes through the interrupt vector to a service routine in
the operating system, and the mode bit is set to kernel mode. The system-
call service routine is a part of the operating system. The kernel examines
the interrupting instruction to determine what system call has occurred; a
parameter indicates what type of service the user program is requesting.
Additional information needed for the request may be passed in registers,
on the stack, or in memory (with pointers to the memory locations passed in
registers). The kernel verifies that the parameters are correct and legal, executes
the request, and returns control to the instruction following the system call. We
describe system calls more fully in Section 2.3.

The lack of a hardware-supported dual mode can cause serious shortcom-
ings in an operating system. For instance, MS-DOS was written for the Intel
8088 architecture, which has no mode bit and therefore no dual mode. A user
program running awry can wipe out the operating system by writing over it
with data; and multiple programs are able to write to a device at the same time,
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with possibly disastrous results. Recent versions of the Intel CPU, such &s the
Pentium, do provide dual-mode operation. Accordingly, most contemporary
operating systems, such as Microsoft Windows 2000 and Windows XP, and
Linux and Solaris for x86 systems, take advantage of this feature and provide
greater protection for the operating system.

Once hardware protection is in place, errors violating modes are detected
by the hardware. These errors are normally handled by the operating system.
If a user program fails in some way—such as by making an attempt either
to execute an illegal instruction or to access memory that is not in the user’s
address space—then the hardware will trap to the operating system. The trap
transfers control through the interrupt vector to the operating system, just as
an interrupt does. When a program error occurs, the operating system must
terminate the program abnormally. This situation is handled by the same code
as is a user-requested abnormal termination. An appropriate error message is
given, and the memory of the program may be dumped. The memory dump
is usually written to a file so that the user or programmer can examine it and
perhaps correct it and restart the program.

1.5.2 Timer

We must ensure that the operating system maintains control over the CPU.
We must prevent a user program from getting stuck in an infinite loop or not
calling system services and never returning control to the operating system.
To accomplish this goal, we can use a timer. A timer can be set to interrupt
the computer after a specified period. The period may be fixed (for example,
1/60 second) or variable (for example, from 1 millisecond to 1 second). A
variable timer is generally implemented by a fixed-rate clock and a counter.
The operating system sets the counter. Every time the clock ticks, the counter
is decremented. When the counter reaches 0, an interrupt occurs. For instance,
a 10-bit counter with a 1-millisecond clock allows interrupts at intervals from
1 millisecond to 1,024 milliseconds, in steps of 1 millisecond.

Before turning over control to the user, the operating system ensures
that the timer is set to interrupt. If the timer interrupts, control transfers
automatically to the operating system, which may treat the interrupt as a fatal
error or may give the program more time. Clearly, instructions that modify the
content of the timer are privileged.

Thus, we can use the timer to prevent a user program from running too
long. A simple technique is to initialize a counter with the amount of time thata
program is allowed to run. A program with a 7-minute time limit, for example,
would have its counter initialized to 420. Every second, the timer interrupts
and the counter is decremented by 1. As long as the counter is positive, control
is returned to the user program. When the counter becomes negative, the
operating system terminates the program for exceeding the assigned time
limit.

Process Management
A program does nothing unless its instructions are executed by a CPU. A

program in execution, as mentioned, is a process. A time-shared user program
such as a compiler is a process. A word-processing program being run by an
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individual user on a PC is a process. A system task, such as sending eutput
to a printer, can also be a process (or at least part of one). For now, you can
consider a process to be a job or a time-shared program, but later you will learn
that the concept is more general. As we shall see in Chapter 3, it is possible
to provide system calls that allow processes to create subprocesses to execute
concurrently.

A process needs certain resources—including CPU time, memory, files,
and 1/0 devices—to accomplish its task. These resources are either given to
the process when it is created or allocated to it while it is running. In addition
to the various physical and logical resources that a process obtains when it is
created, various initialization data (input) may be passed along. For example,
consider a process whose function is to display the status of a file on the screen
of a terminal. The process will be given as an input the name of the file and will
execute the appropriate instructions and system calls to obtain and display
on the terminal the desired information. When the process terminates, the
operating system will reclaim any reusable resources.

We emphasize that a program by itself is not a process; a program is a passive
entity, such as the contents of a file stored on disk, whereas a process is an active
entity. A single-threaded process has one program counter specifying the next
instruction to execute. (Threads will be covered in Chapter 4.) The execution
of such a process must be sequential. The CPU executes one instruction of the
process after another, until the process completes. Further, at any time, one
instruction at most is executed on behalf of the process. Thus, although two
processes may be associated with the same program, they are nevertheless
considered two separate execution sequences. A multithreaded process has
multiple program counters, each pointing to the next instruction to execute for
a given thread.

A process is the unit of work in a system. Such a system consists of a
collection of processes, some of which are operating-system processes (those
that execute system code) and the rest of which are user processes (those that
execute user code). All these processes can potentially execute concurrently —
by multiplexing the CPU among them on a single CPU, for example.

The operating system is responsible for the following activities in connec-
tion with process management:

» (Creating and deleting both user and system processes
e Suspending and resuming processes

e Providing mechanisms for process synchronization

e Providing mechanisms for process communication

e Providing mechanisms for deadlock handling

We discuss process-management techniques in Chapters 3 through 6.

Memory Management

As we discussed in Section 1.2.2, the main memory is central to the operation
of a modern computer system. Main memory is a large array of words or bytes,
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ranging in size from hundreds of thousands to billions. Each word or byte has
its own address. Main memory is a repository of quickly accessible data shared
by the CPU and 1/0 devices. The central processor reads instructions from main
memory during the instruction-fetch cycle and both reads and writes data from
main memory during the data-fetch cycle (on a Von Neumann architecture).
The main memory is generally the only large storage device that the CPU is able
to address and access directly. For example, for the CPU to process data from
disk, those data must first be transferred to main memory by CPU-generated
1/0 calls. In the same way, instructions must be in memory for the CPU to
execute them.

For a program to be executed, it must be mapped to absolute addresses and
loaded into memory. As the program executes, it accesses program instructions
and data from memory by generating these absolute addresses. Eventually,
the program terminates, its memory space is declared available, and the next
program can be loaded and executed.

To improve both the utilization of the CPU and the speed of the computer’s
response to its users, general-purpose computers must keep several programs
in memory, creating a need for memory management. Many different memory-
management schemes are used. These schemes reflect various approaches, and
the effectiveness of any given algorithm depends on the situation. In selecting a
memory-management scheme for a specific system, we must take into account
many factors—especially on the hardware design of the system. Each algorithm
requires its own hardware support.

The operating system is responsible for the following activities in connec-
tion with memory management:

¢ Keeping track of which parts of memory are currently being used and by
whom

e Deciding which processes (or parts thereof) and data to move into and out
of memory

e Allocating and deallocating memory space as needed

Memory-management techniques will be discussed in Chapters 8 and 9.

Storage Management

To make the computer system convenient for users, the operating system
provides a uniform, logical view of information storage. The operating system
abstracts from the physical properties of its storage devices to define a logical
storage unit, the file. The operating system maps files onto physical media and
accesses these files via the storage devices.

1.8.1 File-System Management

File management is one of the most visible components of an operating system.
Computers can store information on several different types of physical media.
Magnetic disk, optical disk, and magnetic tape are the most common. Each
of these media has its own characteristics and physical organization. Each
medium is controlled by a device, such as a disk drive or tape drive, that
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also has its own unique characteristics. These properties include access:speed,
capacity, data-transfer rate, and access method (sequential or random).

Afileis a collection of related information defined by its creator. Commonly,
files represent programs (both source and object forms) and data. Data files may
be numeric, alphabetic, alphanumeric, or binary. Files may be free-form (for
example, text files), or they may be formatted rigidly (for example, fixed fields).
Clearly, the concept of a file is an extremely general one.

The operating system implements the abstract concept of a fileby managing
mass storage media, such as tapes and disks, and the devices that control them.
Also, files are normally organized into directories to make them easier to use.
Finally, when multiple users have access to files, it may be desirable to control
by whom and in what ways (for example, read, write, append) files may be
accessed.

The operating system is responsible for the following activities in connec-
tion with file management:

¢ Creating and deleting files

¢ Creating and deleting directories to organize files

e Supporting primitives for manipulating files and directories
¢ Mapping files onto secondary storage

¢ Backing up files on stable (nonvolatile) storage media

File-management techniques will be discussed in Chapters 10 and 11.

1.8.2 Mass-Storage Management

As we have already seen, because main memory is too small to accommodate
all data and programs, and because the data that it holds are lost when power
is lost, the computer system must provide secondary storage to back up main
memory. Most modern computer systems use disks as the principal on-line
storage medium for both programs and data. Most programs—including
compilers, assemblers, word processors, editors, and formatters—are stored
on a disk until loaded into memory and then use the disk as both the source
and destination of their processing. Hence, the proper management of disk
storage is of central importance to a computer system. The operating system is
responsible for the following activities in connection with disk management:

¢ Free-space management
e Storage allocation

e Disk scheduling

Because secondary storage is used frequently, it must be used efficiently. The
entire speed of operation of a computer may hinge on the speeds of the disk
subsystem and of the algorithms that manipulate that subsystem.

There are, however, many uses for storage that is slower and lower in cost
(and sometimes of higher capacity) than secondary storage. Backups of disk
data, seldom-used data, and long-term archival storage are some examples.
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Magpnetic tape drives and their tapes and CD and DVD drives and plattets are
typical tertiary storage devices. The media (tapes and optical platters) vary
between WORM (write-once, read-many-times) and RW (read —write) formats.

Tertiary storage is not crucial to system performance, but it still must
be managed. Some operating systems take on this task, while others leave
tertiary-storage management to application programs. Some of the functions
that operating systems can provide include mounting and unmounting media
in devices, allocating and freeing the devices for exclusive use by processes,
and migrating data from secondary to tertiary storage.

Techniques for secondary and tertiary storage management will be dis-
cussed in Chapter 12.

1.8.3 Caching

Caching is an important principle of computer systems. Information is
normally kept in some storage system (such as main memory). As it is used,
it is copied into a faster storage system—the cache—on a temporary basis.
When we need a particular piece of information, we first check whether it is
in the cache. If it is, we use the information directly from the cache; if it is not,
we use the information from the source, putting a copy in the cache under the
assumption that we will need it again soon.

In addition, internal programmable registers, such as index registers,
provide a high-speed cache for main memory. The programmer (or compiler)
implements the register-allocation and register-replacement algorithms to
decide which information to keep in registers and which to keep in main
memory. There are also caches that are implemented totally in hardware. For
instance, most systems have an instruction cache to hold the next instructions
expected to be executed. Without this cache, the CPU would have to wait
several cycles while an instruction was fetched from main memory. For similar
reasons, most systems have one or more high-speed data caches in the memory
hierarchy. We are not concerned with these hardware-only caches in this text,
since they are outside the control of the operating system.

Because caches have limited size, cache management is an important
design problem. Careful selection of the cache size and of a replacement
policy can result in greatly increased performance. See Figure 1.9 for a storage
performance comparison in large workstations and small servers that shows
the need for caching. Various replacement algorithms for software-controlled
caches are discussed in Chapter 9.

Main memory can be viewed as a fast cache for secondary storage, since
data in secondary storage must be copied into main memory for use, and
data must be in main memory before being moved to secondary storage for
safekeeping. The file-system data, which resides permanently on secondary
storage, may appear on several levels in the storage hierarchy. At the highest .
level, the operating system may maintain a cache of file-system data in main
memory. Also, electronic RAM disks (also known as solid-state disks) may be
used for high-speed storage that is accessed through the file-system interface.
The bulk of secondary storage is on magnetic disks. The magnetic-disk storage,
in turn, is often backed up onto magnetic tapes or removable disks to protect
against data loss in case of a hard-disk failure. Some systems automatically
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Figure 1.9 Performance of various levels of storage.

archive old file data from secondary storage to tertiary storage, such as tape
jukeboxes, to lower the storage cost (see Chapter 12).

The movement of information between levels of a storage hierarchy may
be either explicit or implicit, depending on the hardware design and the
controlling operating-system software. For instance, data transfer from cache
to CPU and registers is usually a hardware function, with no operating-system
intervention. In contrast, transfer of data from disk to memory is usually
controlled by the operating system.

In a hierarchical storage structure, the same data may appear in different
levels of the storage system. For example, suppose that an integer A that is to
be incremented by 1 is located in file B, and file B resides on magnetic disk.
The increment operation proceeds by first issuing an 1/0 operation to copy the
disk block on which A resides to main memory. This operation is followed by
copying A to the cache and to an internal register. Thus, the copy of A appears
in several places: on the magnetic disk, in main memory, in the cache, and in an
internal register (see Figure 1.10). Once the increment takes place in the internal
register, the value of A differs in the various storage systems. The value of A
becomes the same only after the new value of A is written from the internal
register back to the magnetic disk.

In a computing environment where only one process executes at a time,
this arrangement poses no difficulties, since an access to integer A will always
be to the copy at the highest level of the hierarchy. However, in a multitasking
environment, where the CPU is switched back and forth among various
processes, extreme care must be taken to ensure that, if several processes wish
to access A, then each of these processes will obtain the most recently updated
value of A.

Figure 1,10 Migration of integer A from disk to register.
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The situation becomes more complicated in a multiprocessor enviroriment
where, in addition to maintaining internal registers, each of the CPUs also
contains a local cache. In such an environment, a copy of A may exist
simultaneously in several caches. Since the various CPUs can all execute
concurrently, we must make sure that an update to the value of A in one cache
is immediately reflected in all other caches where A resides. This situation is
called cache coherency, and it is usually a hardware problem (handled below
the operating-system level).

In a distributed environment, the situation becomes even more complex.
In this environment, several copies (or replicas) of the same file can be kept
on different computers that are distributed in space. Since the various replicas
may be accessed and updated concurrently, some distributed systems ensure
that, when a replica is updated in one place, all other replicas are brought up
to date as soon as possible. There are various ways to achieve this guarantee,
as we discuss in Chapter 17.

1.8.4 1/0O Systems

One of the purposes of an operating system is to hide the peculiarities of specific
hardware devices from the user. For example, in UNIX, the peculiarities of I/0
devices are hidden from the bulk of the operating system itself by the /O
subsystem. The 1/0 subsystem consists of several components:

¢ A memory-management component that includes buffering, caching, and
spooling

® A general device-driver interface

® Drivers for specific hardware devices

Only the device driver knows the peculiarities of the specific device to which
it is assigned.

We discussed in Section 1.2.3 how interrupt handlers and device drivers are
used in the construction of efficient I/O subsystems. In Chapter 13, we discuss
how the 1/0 subsystem interfaces to the other system components, manages
devices, transfers data, and detects [/0 completion.

Protection and Security

If a computer system has multiple users and allows the concurrent execution
of multiple processes, then access to data must be regulated. For that purpose,
mechanisms ensure that files, memory segments, CPU, and other resources can
be operated on by only those processes that have gained proper authoriza-

tion from the operating system. For example, memory-addressing hardware - -

ensures that a process can execute only within its own address space. The
timer ensures that no process can gain control of the CPU without eventually
relinquishing control. Device-control registers are not accessible to users, so
the integrity of the various peripheral devices is protected.

Protection, then, is any mechanism for controlling the access of processes
or users to the resources defined by a computer system. This mechanism must
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provide means for specification of the controls to be imposed and means for
enforcement.

Protection can improve reliability by detecting latent errors at the interfaces
between component subsystems. Early detection of interface errors can often
prevent contamination of a healthy subsystem by another subsystem that
is malfunctioning. An unprotected resource cannot defend against use (or
misuse) by an unauthorized or incompetent user. A protection-oriented system
provides a means to distinguish between authorized and unauthorized usage,
as we discuss in Chapter 14.

A system can have adequate protection but still be prone to failure and
allow inappropriate access. Consider a user whose authentication information
(her means of identifying herself to the system) is stolen. Her data could be
copied or deleted, even though file and memory protection are working. It is
the job of security to defend a system from external and internal attacks. Such
attacks spread across a huge range and include viruses and worms, denial-of-
service attacks (which use all of a system’s resources and so keep legitimate
users out of the system), identity theft, and theft of service (unauthorized use
of a system). Prevention of some of these attacks is consider an operating-
system function on some systems, while others leave the prevention to policy
or additional software. Due to the alarming rise in security incidents, operating-
system security features represent a fast-growing area of research and of
implementation. Security is discussed in Chapter 15.

Protection and security require the system to be able to distinguish among
all its users. Most operating systems maintain a list of user names and
associated user identifiers (user IDs). In Windows NT parlance, thisis a security
ID (SID). These numerical IDs are unique, one per user. When a user logs in
to the system, the authentication stage determines the appropriate user ID for
the user. That user ID is associated with all of the user’s processes and threads.
When an ID needs to be user readable, it is translated back to the user name
via the user name list.

In some circumstances, we wish to distinguish among sets of users rather
than individual users. For example, the owner of a file on a UNIX system may be
allowed to issue all operations on that file, whereas a selected set of users may
only be allowed to read the file. To accomplish this, we need to define a group
name and the set of users belonging to that group. Group functionality can
be implemented as a system-wide list of group names and group identifiers.
A user can be in one or more groups, depending on operating-system design
decisions. The user’s group IDs are also included in every associated process
and thread.

In the course of normal use of a system, the user ID and group ID
for a user are sufficient. However, a user sometimes needs to escalate
privileges to gain extra permissions for an activity. The user may need
access to a device that is restricted, for example. Operating systems pro-
vide various methods to allow privilege escalation. On UNIX, for example,
the setuid attribute on a program causes that program to run with the
user ID of the owner of the file, rather than the current user’s ID. The pro-
cess runs with this effective UID until it turns off the extra privileges or
terminates. Consider an example of how this is done in Solaris 10. User
pbg has user ID 101 and group ID 14, which are assigned via /etc/passwd:
pbg:x:101:14: :/export/home/pbg: /usr/bin/bash
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A distributed system is a collection of physically separate, possibly heteroge-
neous computer systems that are networked to provide the users with access
to the various resources that the system maintains. Access to a shared resource
increases computation speed, functionality, data availability, and reliability.
Some operating systems generalize network access as a form of file access, with
the details of networking contained in the network interface’s device driver.
Others make users specifically invoke network functions. Generally, systems
contain a mix of the two modes—for example FIP and NFS. The protocols
that create a distributed system can greatly affect that system’s utility and
popularity.

A network, in the simplest terms, is a communication path between
two or more systems. Distributed systems depend on networking for their
functionality. Networks vary by the protocols used, the distances between
nodes, and the transport media. TCP/IP is the most common network protocol,
although ATM and other protocols are in widespread use. Likewise, operating-
system support of protocols varies. Most operating systems support TCP/IP,
including the Windows and UNIX operating systems. Some systems support
proprietary protocols to suit their needs. To an operating system, a network
protocol simply needs an interface device—a network adapter, for example—
with a device driver to manage it, as well as software to handle data. These
concepts are discussed throughout this book.

Networks are characterized based on the distances between their nodes.
A local-area network (LAN) connects computers within a room, a floor,
or a building. A wide-area network (WAN) usually links buildings, cities,
or countries. A global company may have a WAN to connect its offices
worldwide. These networks may run one protocol or several protocols. The
continuing advent of new technologies brings about new forms of networks.
For example, a metropolitan-area network (MAN) could link buildings within
a city. BlueTooth and 802.11 devices use wireless technology to communicate
over a distance of several feet, in essence creating a small-area network such
as might be found in a home.

The media to carry networks are equally varied. They include copper wires,
fiber strands, and wireless transmissions between satellites, microwave dishes,
and radios. When computing devices are connected to cellular phones, they
create a network. Even very short-range infrared communication can be used
for networking. At a rudimentary level, whenever computers communicate,
they use or create a network. These networks also vary in their performance
and reliability.

Some operating systems have taken the concept of networks and dis-
tributed systems further than the notion of providing network connectivity. A
network operating system is an operating system that provides features such

as file sharing across the network and that includes a communication scheme . -

that allows different processes on different computers to exchange messages.
A computer running a network operating system acts autonomously from all
other computers on the network, although it is aware of the network and is
able to communicate with other networked computers. A distributed operat-
ing system provides a less autonomous environment: The different operating
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systems communicate closely enough to provide the illusion that only a single
operating system controls the network.

We cover computer networks and distributed systems in Chapters 16
through 18.

Special-Purpose Systems

The discussion thus far has focused on general-purpose computer systems
that we are all familiar with. There are, however, different classes of computer
systems whose functions are more limited and whose objective is to deal with
limited computation domains.

1.11.1 Real-Time Embedded Systems

Embedded computers are the most prevalent form of computers in existence.
These devices are found everywhere, from car engines and manufacturing
robots to VCRs and microwave ovens. They tend to have very specific tasks.
The systems they run on are usually primitive, and so the operating systems
provide limited features. Usually, they havelittle or no user interface, preferring
to spend their time monitoring and managing hardware devices, such as
automobile engines and robotic arms.

These embedded systems vary considerably. Some are general-purpose
computers, running standard operating systems—such as UNIX—with
special-purpose applications to implement the functionality. Others are
hardware devices with a special-purpose embedded operating system
providing just the functionality desired. Yet others are hardware devices
with application-specific integrated circuits (ASICs) that perform their tasks
without an operating system.

The use of embedded systems continues to expand. The power of these
devices, both as standalone units and as members of networks and the Web,
is sure to increase as well. Even now, entire houses can be computerized, so
that a central computer-—either a general-purpose computer or an embedded
system—can control heating and lighting, alarm systems, and even coffee
makers. Web access can enable a home owner to tell the house to heat up
before she arrives home. Someday, the refrigerator may call the grocery store
when it notices the milk is gone.

Embedded systems almost always run real-time operating systems. A
real-time system is used when rigid time requirements have been placed on
the operation of a processor or the flow of data; thus, it is often used as a
control device in a dedicated application. Sensors bring data to the computer.
The computer must analyze the data and possibly adjust controls to modify
the sensor inputs. Systems that control scientific experiments, medical imaging
systems, industrial control systems, and certain display systems are real-
time systems. Some automobile-engine fuel-injection systems, home-appliance
controllers, and weapon systems are also real-time systems.

A real-time system has well-defined, fixed time constraints. Processing
must be done within the defined constraints, or the system will fail. For instance,
it would not do for a robot arm to be instructed to halt after it had smashed
into the car it was building. A real-time system functions correctly only if it
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returns the correct result within its time constraints. Contrast this system with
a time-sharing system, where it is desirable (but not mandatory) to respond
quickly, or a batch system, which may have no time constraints at all.

In Chapter 19, we cover real-time embedded systems in great detail. In
Chapter 5, we consider the scheduling facility needed to implement real-time
functionality in an operating system. In Chapter 9, we describe the design
of memory management for real-time computing. Finally, in Chapter 22, we
describe the real-time components of the Windows XP operating system.

1.11.2 Multimedia Systems

Most operating systems are designed to handle conventional data such as
text files, programs, word-processing documents, and spreadsheets. However,
a recent trend in technology is the incorporation of multimedia data into
computer systems. Multimedia data consist of audio and video files as well as
conventional files. These data differ from conventional data in that multimedia
data—such as frames of video—must be delivered (streamed) according to
certain time restrictions (for example, 30 frames per second).

Multimedia describes a wide range of applications that are in popular use
today. These include audio files such as MP3 DVD movies, video conferencing,
and short video clips of movie previews or news stories downloaded over the
Internet. Multimedia applications may also include live webcasts (broadcasting
over the World Wide Web) of speeches or sporting events and even live
webcams that allow a viewer in Manhattan to observe customers at a cafe
in Paris. Multimedia applications need not be either audio or video; rather, a
multimedia application often includes a combination of both. For example, a
movie may consist of separate audio and video tracks. Nor must multimedia
applications be delivered only to desktop personal computers. Increasingly,
they are being directed toward smaller devices, including PDAs and cellular
telephones. For example, a stock trader may have stock quotes delivered
wirelessly and in real time to his PDA.

In Chapter 20, we explore the demands of multimedia applications, how
multimedia data differ from conventional data, and how the nature of these
data affects the design of operating systems that support the requirements of
multimedia systems.

1.11.3 Handheld Systems

Handheld systems include personal digital assistants (PDAs), such as Palm
and Pocket-PCs, and cellular telephones, many of which use special-purpose
embedded operating systems. Developers of handheld systems and applica-
tions face many challenges, most of which are due to the limited size of such
devices. For example, a PDA is typically about 5 inches in height and 3 inches
in width, and it weighs less than one-half pound. Because of their size, most
handheld devices have a small amount of memory, slow processors, and small
display screens. We will take a look now at each of these limitations.

The amount of physical memory in a handheld depends upon the device,
but typically is is somewhere between 512 KB and 128 MB. (Contrast this with a
typical PC or workstation, which may have several gigabytes of memory!)
As a result, the operating system and applications must manage memory
efficiently. This includes returning all allocated memory back to the memory
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manager when the memory is not being used. In Chapter 9, we will explore
virtual memory, which allows developers to write programs that behave as if
the system has more memory than is physically available. Currently, not many
handheld devices use virtual memory techniques, so program developers must
work within the confines of limited physical memory.

A second issue of concern to developers of handheld devices is the speed
of the processor used in the devices. Processors for most handheld devices
run at a fraction of the speed of a processor in a PC. Faster processors require
more power. To include a faster processor in a handheld device would require
a larger battery, which would take up more space and would have to be
replaced (or recharged) more frequently. Most handheld devices use smaller,
slower processors that consume less power. Therefore, the operating system
and applications must be designed not to tax the processor.

The last issue confronting program designers for handheld devices is 1/0.
Alack of physical space limits input methods to small keyboards, handwriting
recognition, or small screen-based keyboards. The small display screens limit
output options. Whereas a monitor for a home computer may measure up to
30 inches, the display for a handheld device is often no more than 3 inches
square. Familiar tasks, such as reading e-mail and browsing web pages, must
be condensed into smaller displays. One approach for displaying the content
in web pages is web clipping, where only a small subset of a web page is
delivered and displayed on the handheld device.

Some handheld devices use wireless technology, such as BlueTooth or
802.11, allowing remote access to e-mail and web browsing. Cellular telephones
with connectivity to the Internet fall into this category. However, for PDAs that
do not provide wireless access, downloading data typically requires the user
to first download the data to a PC or workstation and then download the data
to the PDA. Some PDAs allow data to be directly copied from one device to
another using an infrared link.

Generally, the limitations in the functionality of PDAs are balanced by
their convenience and portability. Their use continues to expand as network
connections become more available and other options, such as digital cameras
and MP3 players, expand their utility.

Computing Environments

So far, we have provided an overview of computer-system organization and
major operating-system components. We conclude with a brief overview of
how these are used in a variety of computing environments.

1.12.1 Traditional Computing

As computing matures, the lines separating many of the traditional computing
environments are blurring. Consider the “typical office environment.” Just a
few years ago, this environment consisted of PCs connected to a network,
with servers providing file and print services. Remote access was awkward,
and portability was achieved by use of laptop computers. Terminals attached
to mainframes were prevalent at many companies as well, with even fewer
remote access and portability options.
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The current trend is toward providing more ways to access these computing
environments. Web technologies are stretching the boundaries of traditional
computing. Companies establish portals, which provide web accessibility
to their internal servers. Network computers are essentially terminals that
understand web-based computing. Handheld computers can synchronize with
PCs to allow very portable use of company information. Handheld PDAs can
also connect to wireless networks to use the company’s web portal (as well as
the myriad other web resources).

Athome, most users had a single computer with a slow modem connection
to the office, the Internet, or both. Today, network-connection speeds once
available only at great cost are relatively inexpensive, giving home users more
access to more data. These fast data connections are allowing home computers
to serve up web pages and to run networks that include printers, client PCs,
and servers. Some homes even have firewalls to protect their networks from
security breaches. Those firewalls cost thousands of dollars a few years ago
and did not even exist a decade ago.

In the latter half of the previous century, computing resources were scarce.
(Before that, they were nonexistent!) For a period of time, systems were either
batch or interactive. Batch system processed jobs in bulk, with predetermined
input (from files or other sources of data). Interactive systems waited for
input from users. To optimize the use of the computing resources, multiple
users shared time on these systems. Time-sharing systems used a timer and
scheduling algorithms to rapidly cycle processes through the CPU, giving each
user a share of the resources.

Today, traditional time-sharing systems are uncommon. The same schedul-
ing technique is still in use on workstations and servers, but frequently the
processes are all owned by the same user (or a single user and the operating
system). User processes, and system processes that provide services to the user,
are managed so that each frequently gets a slice of computer time. Consider
the windows created while a user is working on a PC, for example, and the fact
that they may be performing different tasks at the same time.

1.12.2 Client-Server Computing

As PCs have become faster, more powerful, and cheaper, designers have
shifted away from centralized system architecture. Terminals connected to
centralized systems are now being supplanted by PCs. Correspondingly, user-
interface functionality once handled directly by the centralized systems is
increasingly being handled by the PCs. As a result, many of todays systems act
as server systems to satisfy requests generated by client systems. This form
of specialized distributed system, called client-server system, has the general
structure depicted in Figure 1.11.

Server systems can be broadly categorized as compute servers and file
servers:

® The compute-server system provides an interface to which a client can
send a request to perform an action (for example, read data); in response,
the server executes the action and sends back results to the client. A server
running a database that responds to client requests for data is an example
of such a system.
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Figure 1.11 General structure of a client-server system.

e The file-server system provides a file-system interface where clients can
create, update, read, and delete files. An example of such a system is a web
server that delivers files to clients running web browsers.:

1.12.3 Peer-to-Peer Computing

Another structure for a distributed system is the peer-to-peer (P2P) system
model. In this model, clients and servers are not distinguished from one
another; instead, all nodes within the system are considered peers, and each
may act as either a client or a server, depending on whether it is requesting or
providing a service. Peer-to-peer systems offer an advantage over traditional
client-server systems. In a client-server system, the server is a bottleneck; but
in a peer-to-peer system, services can be provided by several nodes distributed
throughout the network.

To participate in a peer-to-peer system, a node must first join the network
of peers. Once a node has joined the network, it can begin providing services
to—and requesting services from—other nodes in the network. Determining
what services are available is accomplished in one of two general ways:

® When a node joins a network, it registers its service with a centralized
lookup service on the network. Any node desiring a specific service first
contacts this centralized lookup service to determine which node provides
the service. The remainder of the communication takes place between the
client and the service provider.

® A peer acting as a client must first discover what node provides a desired
service by broadcasting a request for the service to all other nodes in the
network. The node (or nodes) providing that service responds to the peer
making the request. To support this approach, a discovery protocol must be
provided that allows peers to discover services provided by other peers in
the network.

Peer-to-peer networks gained widespread popularity in the late 1990s with
several file-sharing services, such as Napster and Gnutella, that enable peers
to exchange files with one another. The Napster system uses an approach
similar to the first type described above: a centralized server maintains an
index of all files stored on peer nodes in the Napster network, and the actual
exchanging of files takes place between the peer nodes. The Gnutella system
uses a technique similar to the second type: a client broadcasts file requests
to other nodes in the system, and nodes that can service the request respond
directly to the client. The future of exchanging files remains uncertain because
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~many of the files are copyrighted (music, for example), and there are’laws

governing the distribution of copyrighted material. In any case, though, peer-
to-peer technology undoubtedly will play a role in the future of many services,
such as searching, file exchange, and e-mail.

1.12.4 Web-Based Computing

The Web has become ubiquitous, leading to more access by a wider variety of
devices than was dreamt of a few years ago. PCs are still the most prevalent
access devices, with workstations, handheld PDAs, and even cell phones also
providing access.

Web computing has increased the emphasis on networking. Devices that
were not previously networked now include wired or wireless access. Devices
that were networked now have faster network connectivity, provided by either
improved networking technology, optimized network implementation code,
or both.

The implementation of web-based computing has given rise to new
categories of devices, such as load balancers, which distribute network
connections among a pool of similar servers. Operating systems like Windows
95, which acted as web clients, have evolved into Linux and Windows XP, which
can act as web servers as well as clients. Generally, the Web has increased the
complexity of devices, because their users require them to be web-enabled.

Summary

An operating system is software that manages the computer hardware as well
as providing an environment for application programs to run. Perhaps the
most visible aspect of an operating system is the interface to the computer
system it provides to the human user.

For a computer to do its job of executing programs, the programs must be
in main memory. Main memory is the only large storage area that the processor
can access directly. Itis an array of words or bytes, ranging in size from millions
to billions. Each word in memory has its own address. The main memory is
usually a volatile storage device that loses its contents when power is turned off
or lost. Most computer systems provide secondary storage as an extension of
main memory. Secondary storage provides a form of non-volatile storage that
is capable of holding large quantities of data permanently. The most common
secondary-storage device is a magnetic disk, which provides storage of both
programs and data.

The wide variety of storage systems in a computer system can be organized
in a hierarchy according to speed and cost. The higher levels are expensive,

but they are fast. As we move down the hierarchy, the cost per bit generally-- -

decreases, whereas the access time generally increases.

There are several different strategies for designing a computer system.
Uniprocessor systems have only a single processor while multiprocessor
systems contain two or more processors that share physical memory and
peripheral devices. The most common multiprocessor design is symmetric
multiprocessing (or SMP), where all processors are considered peers and run

H
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independently of one another. Clustered systems are a specialized form of
multiprocessor systems and consist of multiple computer systems connected
by a local area network.

To best utilize the CPU, modern operating systems employ multiprogram-
ming, which allows several jobs to be in memory at the same time, thus ensuring
the CPU always has a job to execute. Timesharing systems are an extension
of multiprogramming whereby CPU scheduling algorithms rapidly switch
between jobs, thus providing the illusion each job is running concurrently.

The operating system must ensure correct operation of the computer
system. To prevent user programs from interfering with the proper operation of
the system, the hardware has two modes: user mode and kernel mode. Various
instructions (such as 1/0 instructions and halt instructions) are privileged and
can be executed only in kernel mode. The memory in which the operating
system resides must also be protected from modification by the user. A timer
prevents infinite loops. These facilities (dual mode, privileged instructions,
memory protection, and timer interrupt) are basic building blocks used by
operating systems to achieve correct operation.

A process (or job) is the fundamental unit of work in an operating system.
Process management includes creating and deleting processes and providing
mechanisms for processes to communicate and synchronize with another.
An operating system manages memory by keeping track of what parts of
memory are being used and by whom. The operating system is also responsible
for dynamically allocating and freeing memory space. Storage space is also
managed by the operating system and this includes providing file systems for
representing files and directories and managing space on mass storage devices.

Operating systems must also be concerned with protecting and securing
the operating system and users. Protection are mechanisms that control the
access of processes or users to the resources made available by the computer
system. Security measures are responsible for defending a computer system
from external or internal attacks.

Distributed systems allow users to share resources on geographically
dispersed hosts connected via a computer network. Services may be provided
through either the client—server model or the peer-to-peer model. In a clustered
system, multiple machines can perform computations on data residing on
shared storage, and computing can continue even when some subset of cluster
members fails.

LANs and WANs are the two basic types of networks. LANs enable
processors distributed over a small geographical area to communicate, whereas
WANs allow processors distributed over a larger area to communicate. LANs
typically are faster than WANs.

There are several computer systems that serve specific purposes. These
include real-time operating systems designed for embedded environments
such as consumer devices, automobiles, and robotics. Real-time operating
systems have well defined, fixed time constraints. Processing must be done .
within the defined constraints, or the system will fail. Multimedia systems
involve the delivery of multimedia data and often have special requirements of
displaying or playing audio, video, or synchronized audio and video streams.

Recently, the influence of the Internet and the World Wide Web has
encouraged the development of modern operating systems that include web
browsers and networking and communication software as integral features.
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1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

1.10

In a multiprogramming and time-sharing environment, several users
share the system simultaneously. This situation can result in various
security problems.

a. What are two such problems?

b. Can we ensure the same degree of security in a time-shared
machine as in a dedicated machine? Explain your answer.

The issue of resource utilization shows up in different forms in different
types of operating systems. List what resources must be managed
carefully in the following settings:

a. Mainframe or minicomputer systems
b. Workstations connected to servers

c. Handheld computers

Under what circumstances would a user be better off using a time-
sharing system rather than a PC or single-user workstation?

Which of the functionalities listed below need to be supported by the
operating system for the following two settings: (a) handheld devices
and (b) real-time systems.

a. Batch programming
b. Virtual memory

c. Time sharing

Describe the differences between symmetric and asymmetric multipro-
cessing. What are three advantages and one disadvantage of multipro-
cessor systems?

How do clustered systems differ from multiprocessor systems? What is
required for two machines belonging to a cluster to cooperate to provide
a highly available service?

Distinguish between the client-server and peer-to-peer models of
distributed systems.

Consider a computing cluster consisting of two nodes running a
database. Describe two ways in which the cluster software can manage
access to the data on the disk. Discuss the benefits and disadvantages of
each.

How are network computers different from traditional personal com-""
puters? Describe some usage scenarios in which it is advantageous to
use network computers.

What is the purpose of interrupts? What are the differences between a
trap and an interrupt? Can traps be generated intentionally by a user
program? If so, for what purpose?
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Direct memory access is used for high-speed 1/0 devices in order to
avoid increasing the CPU’s execution load.

a. How does the CPU interface with the device to coordinate the
transfer?

b. How does the CPU know when the memory operations are
complete?

c. The CPU is allowed to execute other programs while the DMA
controller is transferring data. Does this process interfere with
the execution of the user programs? If so, describe what forms of
interference are caused.

Some computer systems do not provide a privileged mode of operation
in hardware. Is it possible to construct a secure operating system for
these computer systems? Give arguments both that it is and that it is not
possible.

Give two reasons why caches are useful. What problems do they solve?
What problems do they cause? If a cache can be made as large as the
device for which it is caching (for instance, a cache as large as a disk),
why not make it that large and eliminate the device?

Discuss, with examples, how the problem of maintaining coherence of
cached data manifests itself in the following processing environments:

a. Single-processor systems
b. Multiprocessor systems
c¢. Distributed systems

Describe a mechanism for enforcing memory protection in order to
prevent a program from modifying the memory associated with other
programs.

What network configuration would best suit the following environ-
ments?

a. A dormitory floor

b. A university campus
c. A state

d. A nation

Define the essential properties of the following types of operating
systems:

Batch
b. Interactive
c. Time sharing
d. Real time

e. Network
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f. Parallel g
g. Distributed
h. Clustered

i. Handheld

1.18 What are the tradeoffs inherent in handheld computers?
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2.1

An operating system provides the environment within which programs are
executed. Internally, operating systems vary greatly in their makeup, since
they are organized along many different lines. The design of a new operating
system is a major task. It is important that the goals of the system be well
defined before the design begins. These goals form the basis for choices among
various algorithms and strategies.

We can view an operating system from several vantage points. One view
focuses on the services that the system provides; another, on the interface that
it makes available to users and programmers; a third, on its components and
their interconnections. In this chapter, we explore all three aspects of operating
systems, showing the viewpoints of users, programmers, and operating-system
designers. We consider what services an operating system provides, how they
are provided, and what the various methodologies are for designing such
systems. Finally, we describe how operating systems are created and how a
computer starts its operating system.

CHAPTER OBJECTIVES

* To describe the services an operating system provides to users, processes,
and other systems.

¢ To discuss the various ways of structuring an operating system.

* To explain how operating systems are installed and customized and how
they boot.

Operating-System Services

An operating system provides an environment for the execution of programs.
[t provides certain services to programs and to the users of those programs.
The specific services provided, of course, differ from one operating system to
another, but we can identify common classes. These operating-system services
are provided for the convenience of the programmer, to make the programming
task easier.

39
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One set of operating-system services provides functions that are helpful to

the user.

User interface. Almost all operating systems have a user interface (UI).
This interface can take several forms. One is a command-line interface
(CcL1), which uses text commands and a method for entering them (say, a
program to allow entering and editing of commands). Another is a batch
interface, in which commands and directives to control those commands
are entered into files, and those files are executed. Most commonly, a
graphical user interface (GUI) is used. Here, the interface is a window
system with a pointing device to direct 1/0, choose from menus, and make
selections and a keyboard to enter text. Some systems provide two or all
three of these variations.

Program execution. The system must be able to load a program into
memory and to run that program. The program must be able to end its
execution, either normally or abnormally (indicating error).

/O operations. A running program may require [/0, which may involve a
file or an I/0 device. For specific devices, special functions may be desired
(such as recording to a CD or DVD drive or blanking a CRT screen). For
efficiency and protection, users usually cannot control I/0 devices directly.
Therefore, the operating system must provide a means to do1/0.

File-system manipulation. The file system is of particular interest. Obvi-
ously, programs need to read and write files and directories. They also
need to create and delete them by name, search for a given file, and list file
information. Finally, some programs include permissions management to
allow or deny access to files or directories based on file ownership.

Communications. There are many circumstances in which one process
needs to exchange information with another process. Such communication
may occur between processes that are executing on the same computer
or between processes that are executing on different computer systems
tied together by a computer network. Communications may be imple-
mented via shared memory or through message passing, in which packets of
information are moved between processes by the operating system.

Error detection. The operating system needs to be constantly aware of
possible errors. Errors may occur in the CPU and memory hardware (such
as a memory error or a power failure), in 1/0 devices (such as a parity error
on tape, a connection failure on a network, or lack of paper in the printer),
and in the user program (such as an arithmetic overflow, an attempt to
access an illegal memory location, or a too-great use of CPU time). For each
type of error, the operating system should take the appropriate action to
ensure correct and consistent computing. Debugging facilities can greatly
enhance the user’s and programmer s abilities to use the system efficiently.

Another set of operating-system functions exists not for helping the user

but rather for ensuring the efficient operation of the system itself. Systems with
multiple users can gain efficiency by sharing the computer resources among
the users.
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¢ Resource allocation. When there are multiple users or multiple jobs
running at the same time, resources must be allocated to each of them.
Many different types of resources are managed by the operating system.
Some (such as CPU cycles, main memory, and file storage) may have special
allocation code, whereas others (such as 1/0 devices) may have much more
general request and release code. For instance, in determining how best to
use the CPU, operating systems have CPU-scheduling routines that take into
account the speed of the CPU, the jobs that must be executed, the number of
registers available, and other factors. There may also be routines to allocate
printers, modems, USB storage drives, and other peripheral devices.

¢ Accounting. We want to keep track of which users use how much and
what kinds of computer resources. This record keeping may be used for
accounting (so that users can be billed) or simply for accumulating usage
statistics. Usage statistics may be a valuable tool for researchers who wish
to reconfigure the system to improve computing services.

e Protection and security. The owners of information stored in a multiuser or
networked computer system may want to control use of that information.
When several separate processes execute concurrently, it should not be
possible for one process to interfere with the others or with the operating
system itself. Protection involves ensuring that all access to system
resources is controlled. Security of the system from outsiders is also
important. Such security starts with requiring each user to authenticate
himself or herself to the system, usually by means of a password, to gain
access to system resources. It extends to defending external 1/0 devices,
including modems and network adapters, from invalid access attempts
and to recording all such connections for detection of break-ins. If a system
is to be protected and secure, precautions must be instituted throughout
it. A chain is only as strong as its weakest link.

User Operating-System Interface

There are two fundamental approaches for users to interface with the operating
system. One technique is to provide a command-line interface or command
interpreter that allows users to directly enter commands that are to be
performed by the operating system. The second approach allows the user
to interface with the operating system via a graphical user interface or GUL

2.2.1 Command Interpreter

Some operating systems include the command interpreter in the kernel. Others,
such as Windows XP and UNIX, treat the command interpreter as a special
program that is running when a job is initiated or when a user first logs
on (on interactive systems). On systems with multiple command interpreters-
to choose from, the interpreters are known as shells. For example, on UNIX
and Linux systems, there are several different shells a user may choose from
including the Bourne shell, C shell, Bourne-Again shell, the Korn shell, etc. Most
shells provide similar functionality with only minor differences; most users
choose a shell based upon personal preference.
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The main function of the command interpreter is to get and execute the next
user-specified command. Many of the commands given at this level manipulate
files: create, delete, list, print, copy, execute, and so on. The MS-DOS and UNIX
shells operate in this way. There are two general ways in which these commands
can be implemented.

In one approach, the command interpreter itself contains the code to
execute the command. For example, a command to delete a file may cause
the command interpreter to jump to a section of its code that sets up the
parameters and makes the appropriate system call. In this case, the number of
commands that can be given determines the size of the command interpreter,
since each command requires its own implementing code.

An alternative approach—used by UNIX, among other operating systems
—implements most commands through system programs. In this case, the
command interpreter does not understand the command in any way; it merely
uses the command to identify a file to be loaded into memory and executed.
Thus, the UNIX command to delete a file

rm file.txt

would search for a file called rm, load the file into memory, and execute it with
the parameter file.txt. The function associated with the rm command would
be defined completely by the code in the file rm. In this way, programmers can
add new commands to the system easily by creating new files with the proper
names. The command-interpreter program, which can be small, does not have
to be changed for new commands to be added.

2.2.2 Graphical User Interfaces

A second strategy for interfacing with the operating system is through a user-
friendly graphical user interface or GUI Rather than having users directly enter
commands via a command-line interface, a GUI allows provides a mouse-based
window-and-menu system as an interface. A GUI provides a desktop metaphor
where the mouse is moved to position its pointer on images, or icons, on the
screen (the desktop) that represent programs, files, directories, and system
functions. Depending on the mouse pointer’s location, clicking a button on the
mouse can invoke a program, select a file or directory—known as a folder—
or pull down a menu that contains commands.

Graphical user interfaces first appeared due in part to research taking place
in the early 1970s at Xerox PARC research facility. The first GUI appeared on
the Xerox Alto computer in 1973. However, graphical interfaces became more
widespread with the advent of Apple Macintosh computers in the 1980s. The
user interface to the Macintosh operating system (Mac OS) has undergone
various changes over the years, the most significant being the adoption of
the Aqua interface that appeared with Mac OS X. Microsoft’s first version
of Windows—version 1.0—was based upon a GUI interface to the MS-DOS
operating system. The various versions of Windows systems proceeding this
initial version have made cosmetic changes to the appearance of the GUI and
several enhancements to its functionality, including the Windows Explorer.

Traditionally, UNIX systems have been dominated by command-line inter-
faces, although there are various GUI interfaces available, including the Com-
mon Desktop Environment (CDE) and X-Windows systems that are common on
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commercial versions of UNIX such as Solaris and IBM’s AIX system. However,
there has been significant development in GUI designs from various open-
source projects such as K Desktop Environment (or KDE) and the GNOME desktop
by the GNU project. Both the KDE and GNOME desktops run on Linux and
various UNIX systems and are available under open-source licenses, which
means their source code is in the public domain.

The choice of whether to use a command-line or GUI interface is mostly
one of personal preference. As a very general rule, many UNIX users prefer
a command-line interface as they often provide powerful shell interfaces.
Alternatively, most Windows users are pleased to use the Windows GUI
environment and almost never use the MS-DOS shell interface. The various
changes undergone by the Macintosh operating systems provides a nice study
in contrast. Historically, Mac OS has not provided a command line interface,
always requiring its users to interface with the operating system using its GUL
However, with the release of Mac OS5 X (which is in part implemented using a
UNIX kernel), the operating system now provides both a new Aqua interface
and command-line interface as well.

The user interface can vary from system to system and even from user
to user within a system. It typically is substantially removed from the actual
system structure. The design of a useful and friendly user interface is therefore
not a direct function of the operating system. In this book, we concentrate on
the fundamental problems of providing adequate service to user programs.
From the point of view of the operating system, we do not distinguish between
user programs and system programs.

System Calls

System calls provide an interface to the services made available by an operating
system. These calls are generally available as routines written in C and
C++, although certain low-level tasks (for example, tasks where hardware
must be accessed directly), may need to be written using assembly-language
instructions.

Before we discuss how an operating system makes system calls available,
let’s first use an example to illustrate how system calls are used: writing a
simple program to read data from one file and copy them to another file. The
first input that the program will need is the names of the two files: the input file
and the output file. These names can be specified in many ways, depending
on the operating-system design. One approach is for the program to ask the
user for the names of the two files. In an interactive system, this approach will
require a sequence of system calls, first to write a prompting message on the
screen and then to read from the keyboard the characters that define the two
files. On mouse-based and icon-based systems, a menu of file names is usually
displayed in a window. The user can then use the mouse to select the source
name, and a window can be opened for the destination name to be specified.’
This sequence requires many 1/0 system calls.

Once the two file names are obtained, the program must open the input file
and create the output file. Each of these operations requires another system call.
There are also possible error conditions for each operation. When the program
tries to open the input file, it may find that there is no file of that name or that
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the file is protected against access. In these cases, the program should print a
message on the console (another sequence of system calls) and then terminate
abnormally (another system call). If the input file exists, then we must create a
new output file. We may find that there is already an output file with the same
name. This situation may cause the program to abort (a system call), or we
may delete the existing file (another system call) and create a new one (another
system call). Another option, in an interactive system, is to ask the user (via
a sequence of system calls to output the prompting message and to read the
response from the terminal) whether to replace the existing file or to abort the
program.

Now that both files are set up, we enter a loop that reads from the input
file (a system call) and writes to the output file (another system call). Each read
and write must return status information regarding various possible error
conditions. On input, the program may find that the end of the file has been
reached or that there was a hardware failure in the read (such as a parity error).
The write operation may encounter various errors, depending on the output
device (no more disk space, printer out of paper, and so on).

Finally, after the entire file is copied, the program may close both files
(another system call), write a message to the console or window (more
system calls), and finally terminate normally (the final system call). As we
can see, even simple programs may make heavy use of the operating system.
Frequently, systems execute thousands of system calls per second. This system-
call sequence is shown in Figure 2.1.

Most programmers never see this level of detail, however. Typically, appli-
cation developers design programs according to an application programming
interface (API). The API specifies a set of functions that are available to an
application programmer, including the parameters that are passed to each

source file destination file

A

Acceptinput ==

« Opentheinputfile oo
1ff]'edgesn‘te)<i&‘¥.abort

 Create output file
Lt

. Write completion messag

Figure 2.1 Example of how system calls are used.
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EXAMPLE OF STANDARD APL

" return value

l

BOOL ReadFile ¢ (HANDLE file,
LPVOID buffer, :
DWORD bytes To Read, | parameters
LPDWORD bytes Read,

LPOVERLAPPED ovl);

function name

Figure 2.2 The API for the ReadFile( function.“ - a0

A description of the parameters passed to ReadFile() is as follows:

. HANDLE ﬁle—the f]le to be read : :» -:»: ﬁ -: e

¢ LPOVERLAPPED ovl—indicates if 0ve1lapped I/0is bemg used.- e

function and the return values the programmer can expect. Three of the most
common APIs available to application programmers are the Win32 ATI for
Windows systems, the POSIX API for POSIX-based systems (which includes
virtually all versions of UNIX, Linux, and Mac OS X), and the Java API for
designing programs that run on the Java virtual machine.

Note that the system-call names used throughout this text are generic
examples. Each operating system has its own name for each system call.

Behind the scenes, the functions that make up an API typically invoke the
actual system calls on behalf of the application programmer. For example,
the Win32 function CreateProcess() (which unsurprisingly is used to create a
new process) actually calls the NTCreateProcess() system call in the Windows
kernel. Why would an application programmer prefer programming according
to an API rather than invoking actual system calls? There are several reasons for
doing so. One benefit of programming according to an API concerns program
portability: An application programmer designing a program using an API can
expect her program to compile and run on any system that supports the same
API (although in reality, architectural differences often make this more difficult
than it may appear). Furthermore, actual system calls can often be more detailed
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and difficult to work with than the API available to an application programmer.
Regardless, there often exists a strong correlation between invoking a function
in the API and its associated system call within the kernel. In fact, many of the
POSIX and Win32 APIs are similar to the native system calls provided by the
UNIX, Linux, and Windows operating systems.

The run-time support system (a set of functions built into libraries included
with a compiler) for most programming languages provides a system-call
interface that serves as the link to system calls made available by the operating
system. The system-call interface intercepts function calls in the APl and
invokes the necessary system call within the operating system. Typically, a
number is associated with each system call, and the system-call interface
maintains a table indexed according to these numbers. The system call interface
then invokes the intended system call in the operating system kernel and
returns the status of the system call and any return values.

The caller needs to know nothing about how the system call is implemented
or what it does during execution. Rather, it just needs to obey the API and
understand what the operating system will do as a result of the execution of
that system call. Thus, most of the details of the operating-system interface
are hidden from the programmer by the API and are managed by the run-time
support library. The relationship between an API, the system-call interface,
and the operating system is shown in Figure 2.3, which illustrates how the
operating system handles a user application invoking the open() system call.

System calls occur in different ways, depending on the computer in use.
Often, more information is required than simply the identity of the desired
system call. The exact type and amount of information vary according to the
particular operating system and call. For example, to get input, we may need
to specify the file or device to use as the source, as well as the address and

+.2user-application

open ()
user
mode .
system call interface
kernel
mode A
I open ()
. Implementation
i » of open ()
system call
return

Figure 2.3 The handling of a user application invoking the open() system call.
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register

code for
system
call 13

user program

operating system
Figure 2.4 Passing of parameters as a table.

length of the memory buffer into which the input should be read. Of course,
the device or file and length may be implicit in the call.

Three general methods are used to pass parameters to the operating system.
The simplest approach is to pass the parameters in registers. In some cases,
however, there may be more parameters than registers. In these cases, the
parameters are generally stored in a block, or table, in memory, and the address
of the block is passed as a parameter in a register (Figure 2.4). This is the
approach taken by Linux and Solaris. Parameters also can be placed, or pushed,
onto the stack by the program and popped off the stack by the operating system.
Some operating systems prefer the block or stack method, because those
approaches do not limit the number or length of parameters being passed.

Types of System Calls

System calls can be grouped roughly into five major categories: process
control, file manipulation, device manipulation, information maintenance,
and communications. In Sections 2.4.1 through 2.4.5, we discuss briefly the
types of system calls that may be provided by an operating system. Most of
these system calls support, or are supported by, concepts and functions that
are discussed in later chapters. Figure 2.5 summarizes the types of system calls
normally provided by an operating system.

2.41 Process Control

A running program needs to be able to halt its execution either normally (end)
or abnormally (abort). If a system call is made to terminate the currently
running program abnormally, or if the program runs into a problem and
causes an error trap, a dump of memory is sometimes taken and an error
message generated. The dump is written to disk and may be examined by a
debugger—a system program designed to aid the programmer in finding and
correcting bugs—to determine the cause of the problem. Under either normal
or abnormal circumstances, the operating system must transfer control to the
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® Process control s
o end, abort
o load, execute
© create process, terminate process
o get process attributes, set process attributes

o wait for time

O

wait event, signal event

(o]

allocate and free memory

File management
o create file, delete file

o open, close
o read, write, reposition
o get file attributes, set file attributes

¢ Device management
o request device, release device

o read, write, reposition
o get device attributes, set device attributes

o logically attach or detach devices

Information maintenance
o get time or date, set time or date

o get system data, set system data
o get process, file, or device attributes
o set process, file, or device attributes

¢ Communications
o create, delete communication connection

o send, receive messages
o transfer status information

o attach or detach remote devices

Figure 2.5 Types of system calls.

invoking command interpreter. The command interpreter then reads the next
command. In an interactive system, the command interpreter simply continues
with the next command,; it is assumed that the user will issue an appropriate
command to respond to any error. In a GUI system, a pop-up window might
alert the user to the error and ask for guidance. In a batch system, the command
interpreter usually terminates the entire job and continues with the next job.
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portion of the system-call interfac
As le

| #include <stdio.h>
int main ()

printf ("Greetings");

return o;

standard C library

write ()
system call

Some systems allow control cards to indicate special recovery actions in case
an error occurs. A control card is a batch system concept. It is a command to
manage the execution of a process. If the program discovers an error in its input
and wants to terminate abnormally, it may also want to define an error level.
More severe errors can be indicated by a higher-level error parameter. It is then
possible to combine normal and abnormal termination by defining a normal
termination as an error at level 0. The command interpreter or a following
program can use this error level to determine the next action automatically.

A process or job executing one program may want to load and execute
another program. This feature allows the command interpreter to execute a
program as directed by, for example, a user command, the click of a mouse,
or a batch command. An interesting question is where to return control when
the loaded program terminates. This question is related to the problem of
whether the existing program is lost, saved, or allowed to continue execution
concurrently with the new program.
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If control returns to the existing program when the new program termi-
nates, we must save the memory image of the existing program; thus, we have
effectively created a mechanism for one program to call another program. If
both programs continue concurrently, we have created a new job or process to
be multiprogrammed. Often, there is a system call specifically for this purpose
(create process or submit job).

If we create a new job or process, or perhaps even a set of jobs or processes,
we should be able to control its execution. This control requires the ability
to determine and reset the attributes of a job or process, including the job’s
priority, its maximum allowable execution time, and so on (get process
attributes and set process attributes). We may also want to terminate
a job or process that we created (terminate process) if we find that it is
incorrect or is no longer needed.

Having created new jobs or processes, we may need to wait for them to
finish their execution. We may want to wait for a certain amount of time to
pass (wait time); more probably, we will want to wait for a specific event
to occur (wait event). The jobs or processes should then signal when that
event has occurred (signal event). System calls of this type, dealing with the
coordination of concurrent processes, are discussed in great detail in Chapter
6.

Another set of system calls is helpful in debugging a program. Many
systems provide system calls to dump memory. This provision is useful for
debugging. A program trace lists each instruction as it is executed; it is
provided by fewer systems. Even microprocessors provide a CPU mode known
as single step, in which a trap is executed by the CPU after every instruction.
The trap is usually caught by a debugger.

Many operating systems provide a time profile of a program to indicate
the amount of time that the program executes at a particular location or set
of locations. A time profile requires either a tracing facility or regular timer
interrupts. At every occurrence of the timer interrupt, the value of the program

free memory

free memory

process
' command ,
iinterpreter iiicommand:
L e interpreter S
kernel kernel-

(a) (b)

Figure 2.7 MS-DOS execution. (a) At system startup. (b) Running a program.
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counter is recorded. With sufficiently frequent timer interrupts, a statistical
picture of the time spent on various parts of the program can be obtained.

There are so many facets of and variations in process and job control that
we next use two examples—one involving a single-tasking system and the
other a multitasking system—to clarify these concepts. The MS-DOS operating
system is an example of a single-tasking system. It has a command interpreter
that is invoked when the computer is started (Figure 2.7(a)). Because MS-DOS
is single-tasking, it uses a simple method to run a program and does not create
a new process. It loads the program into memory, writing over most of itself to
give the program as much memory as possible (Figure 2.7(b)). Next, it sets the
instruction pointer to the first instruction of the program. The program then
runs, and either an error causes a trap, or the program executes a system call
to terminate. In either case, the error code is saved in the system memory for
later use. Following this action, the small portion of the command interpreter
that was not overwritten resumes execution. Its first task is to reload the rest
of the command interpreter from disk. Then the command interpreter makes
the previous error code available to the user or to the next program.

FreeBSD (derived from Berkeley UNIX) is an example of a multitasking
system. When a user logs on to the system, the shell of the user’s choice
is run. This shell is similar to the MS-DOS shell in that it accepts commands
and executes programs that the user requests. However, since FreeBSD is a
multitasking system, the command interpreter may continue running while
another program is executed (Figure 2.8). To start a new process, the shell
executes a fork() system call. Then, the selected program is loaded into
memory via an exec () system call, and the program is executed. Depending
on the way the command was issued, the shell then either waits for the process
to finish or runs the process “in the background.” In the latter case, the shell
immediately requests another command. When a process is running in the
background, it cannot receive input directly from the keyboard, because the
shell is using this resource. I/O is therefore done through files or through a GUI
interface. Meanwhile, the user is free to ask the shell to run other programs, to
monitor the progress of the running process, to change that program'’s priority,

process D

free memory

process C

 interpreter

process B

kernel

Figure 2.8 FreeBSD running multiple programs.
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s K in kemel mode. :

| # ./all.d ‘pgrep xclock' XEventsQueued .
| dtrace: script ‘./all.d’ matched 52377 probes |
CPU FUNCTION
0 -> XEventsQueued
0 -> _XEventsQueued
-> _XllTransBytesReadable
<—- _XllTransBytesReadable
-> _XllTransSocketBytesReadable
<~ _XllTransSocketBytesreadable
-> ioctl
-> ioctl
-> getf
-> set_active fd
<- set active fd
<- getf
-> get udatamodel
<- get_udatamodel

OO0 00O0OO0CO 0o OO0
AAARRRRRGgOQCQOQCag

-> releasef
-> clear_active_fd
<- clear_ active fd
-> cv_broadcast
<- cv_broadcast
<- releasef
<- ioctl
<- ioctl
<— _XEventsQueued
<- XEventsQueued

cooocoocoooo.
cadgdARAA"ARRARNR

Fxgure 2.9 Soi ans 10 dtrace fonows a system call wuthm the keme!

_Other operatmg systems are starting to include various performance' v
and tracing tools, fostered by research at various institutions, mclucung the :
Paradynpr()]ect e .

and so on. When the process is done, it executes an exit () system call to
terminate, returning to the invoking process a status code of 0 or a nonzero
error code. This status or error code is then available to the shell or other
programs. Processes are discussed in Chapter 3 with an program example
using the fork () and exec () system calls.
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2.4.2 File Management

The file system will be discussed in more detail in Chapters 10 and 11. We can,
however, identify several common system calls dealing with files,

We first need to be able to create and delete files. Either system call
requires the name of the file and perhaps some of the file’s attributes. Once the
file is created, we need to open it and to use it. We may also read, write, or
reposition (rewinding or skipping to the end of the file, for example). Finally,
we need to close the file, indicating that we are no longer using it.

We may need these same sets of operations for directories if we have a
directory structure for organizing files in the file system. In addition, for either
files or directories, we need to be able to determine the values of various
attributes and perhaps to reset them if necessary. File attributes include the
file name, a file type, protection codes, accounting information, and so on.
At least two system calls, get file attribute and set file attribute,
are required for this function. Some operating systems provide many more
calls, such as calls for file move and copy. Others might provide an API that
performs those operations using code and other system calls, and others might
just provide system programs to perform those tasks. If the system programs
are callable by other programs, then each can be considered an API by other
system programs.

2.4.3 Device Management

A process may need several resources to execute—main memory, disk drives,
access to files, and so on. If the resources are available, they can be granted,
and control can be returned to the user process. Otherwise, the process will
have to wait until sufficient resources are available.

The various resources controlled by the operating sysstem can be thought
of as devices. Some of these devices are physical devices (for example, tapes),
while others can be thought of as abstract or virtual devices (for example,
files). If there are multiple users of the system, the system may require us to
first request the device, to ensure exclusive use of it. After we are finished
with the device, we release it. These functions are similar to the open and
close system calls for files. Other operating systems allow unmanaged access
to devices. The hazard then is the potential for device contention and perhaps
deadlock, which is described in Chapter 7.

Once the device has been requested (and allocated to us), we can read,
write, and (possibly) reposition the device, just as we can with files. In fact,
the similarity between I/0O devices and files is so great that many operating
systems, including UNIX, merge the two into a combined file—device structure.
In this case, a set of system calls is used on files and devices. Sometimes,
1/0 devices are identified by special file names, directory placement, or file
attributes.

The UI can also make files and devices appear to be similar, even though
the underlying system calls are dissimilar. This is another example of the many
design decisions that go into building an operating system and user interface.

2.4.4 Information Maintenance

Many system calls exist simply for the purpose of transferring information
between the user program and the operating system. For example, most
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systems have a system call to return the current time and date. Other system
calls may return information about the system, such as the number of current
users, the version number of the operating system, the amount of free memory
or disk space, and so on.

In addition, the operating system keeps information about all its processes,
and system calls are used to access this information. Generally, calls are
also used to reset the process information (get process attributes and
set process attributes). In Section 3.1.3, we discuss what information is
normally kept.

2.4.5 Communication

There are two common models of interprocess communication: the message-
passing model and the shared-memory model. In the message-passing model,
the communicating processes exchange messages with one another to transfer
information. Messages can be exchanged between the processes either directly
or indirectly through a common mailbox. Before communication can take
place, a connection must be opened. The name of the other communicator
must be known, be it another process on the same system or a process on
another computer connected by a communications network. Each computer
in a network has a host name by which it is commonly known. A host also
has a network identifier, such as an IP address. Similarly, each process has
a process name, and this name is translated into an identifier by which the
operating system can refer to the process. The get hostidandget processid
system calls do this translation. The identifiers are then passed to the general-
purpose open and close calls provided by the file system or to specific
open connection and close connection system calls, depending on the
system’s model of communication. The recipient process usually must give its
permission for communication to take place with an accept connection call.
Most processes that will be receiving connections are special-purpose daemons,
which are systems programs provided for that purpose. They execute a wait
for connectioncalland areawakened when a connection is made. The source
of the communication, known as the client, and the receiving daemon, known as
a server, then exchange messages by using read message and write message
system calls. The close connection call terminates the communication.

In the shared-memory model, processes use shared memory create and
shared memory attach system calls to create and gain access to regions of
memory owned by other processes. Recall that, normally, the operating system
tries to prevent one process from accessing another process’s memory. Shared
memory requires that two or more processes agree to remove this restriction.
They can then exchange information by reading and writing data in the shared
areas. The form of the data and the location are determined by the processes and
are not under the operating system'’s control. The processes are also responsible
for ensuring that they are not writing to the same location simultaneously. Such
mechanisms are discussed in Chapter 6. In Chapter 4, we look at a variation of
the process scheme—threads—in which memory is shared by default.

Both of the models just discussed are common in operating systems,
and most systems implement both. Message passing is useful for exchanging
smaller amounts of data, because no conflicts need be avoided. Itis also easier to
implement than is shared memory for intercomputer communication. Shared
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memory allows maximum speed and convenience of communication, since it
can be done at memory speeds when it takes place within a computer. Problems
exist, however, in the areas of protection and synchronization between the
processes sharing memory.

System Programs

Another aspect of a modern system is the collection of system programs. Recall
Figure 1.1, which depicted the logical computer hierarchy. At the lowest level is
hardware. Next is the operating system, then the system programs, and finally
the application programs. System programs provide a convenient environment
for program development and execution. Some of them are simply user
interfaces to system calls; others are considerably more complex. They can
be divided into these categories:

¢ File management. These programs create, delete, copy, rename, print,
dump, list, and generally manipulate files and directories.

¢ Status information. Some programs simply ask the system for the date,
time, amount of available memory or disk space, number of users, or
similar status information. Others are more complex, providing detailed
performance, logging, and debugging information. Typically, these pro-
grams format and print the output to the terminal or other output devices
or files or display it in a window of the GUL Some systems also support a
registry, which is used to store and retrieve configuration information.

e File modification. Several text editors may be available to create and
modify the content of files stored on disk or other storage devices. There
may also be special commands to search contents of files or perform
transformations of the text.

e Programming-language support. Compilers, assemblers, debuggers and
interpreters for common programming languages (such as C, C++, Java,
Visual Basic, and PERL) are often provided to the user with the operating
system.

e Program loading and execution. Once a program is assembled or com-
piled, it must be loaded into memory to be executed. The system may
provide absolute loaders, relocatable loaders, linkage editors, and overlay
loaders. Debugging systems for either higher-level languages or machine
language are needed as well.

e Communications. These programs provide the mechanism for creating
virtual connections among processes, users, and computer systems. They
allow users to send messages to one another’s screens, to browse web
pages, to send electronic-mail messages, to log in remotely, or to transfer
files from one machine to another.

In addition to systems programs, most operating systems are supplied
with programs that are useful in solving common problems or performing
common operations. Such programs include web browsers, word processors
and text formatters, spreadsheets, database systems, compilers, plotting and
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statistical-analysis packages, and games. These programs are known as system
utilities or application programs.

The view of the operating system seen by most users is defined by the
application and system programs, rather than by the actual system calls.
Consider PCs. When his computer is running the Mac OS X operating system, a
user might see the GUI, featuring a mouse and windows interface. Alternatively,
or even in one of the windows, he might have a command-line UNIX shell. Both
use the same set of system calls, but the system calls look different and act in
different ways.

Operating-System Design and Implementation

In this section, we discuss problems we face in designing and implementing an
operating system. There are, of course, no complete solutions to such problems,
but there are approaches that have proved successful.

2.6.1 Design Goals

The first problem in designing a system is to define goals and specifications.
At the highest level, the design of the system will be affected by the choice of
hardware and the type of system: batch, time shared, single user, multiuser,
distributed, real time, or general purpose.

Beyond this highest design level, the requirements may be much harder to
specify. The requirements can, however, be divided into two basic groups: user
goals and systent goals.

Users desire certain obvious properties in a system: The system should be
convenient to use, easy to learn and to use, reliable, safe, and fast. Of course,
these specifications are not particularly useful in the system design, since there
is no general agreement on how to achieve them.

A similar set of requirements can be defined by those people who must
design, create, maintain, and operate the system: The system should be easy
to design, implement, and maintain; it should be flexible, reliable, error free,
and efficient. Again, these requirements are vague and may be interpreted in
various ways.

There is, in short, no unique solution to the problem of defining the
requirements for an operating system. The wide range of systems in existence
shows that different requirements can result in a large variety of solutions for
different environments. For example, the requirements for VxWorks, a real-
time operating system for embedded systems, must have been substantially
different from those for MVS, a large multiuser, multiaccess operating system
for IBM mainframes.

Specifying and designing an operating system is a highly creative task.
Although no textbook can tell you how to do it, general principles have
been developed in the field of software engineering, and we turn now to
a discussion of some of these principles.

2.6.2 Mechanisms and Policies

One important principle is the separation of policy from mechanism. Mecha-
nisms determine /0w to do something; policies determine what will be done.
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For example, the timer construct (see Section 1.5.2) is a mechanism for ensuring
CPU protection, but deciding how long the timer is to be set for a particular
user is a policy decision.

The separation of policy and mechanism is important for flexibility. Policies
are likely to change across places or over time. In the worst case, each change
in policy would require a change in the underlying mechanism. A general
mechanism insensitive to changes in policy would be more desirable. A change
in policy would then require redefinition of only certain parameters of the
system. For instance, consider a mechanism for giving priority to certain types
of programs over others. If the mechanism is properly separated from policy,
it can be used to support a policy decision that I/O-intensive programs should
have priority over CPU-intensive ones or to support the opposite policy.

Microkernel-based operating systems (Section 2.7.3) take the separation of
mechanism and policy to one extreme by implementing a basic set of primitive
building blocks. These blocks are almost policy free, allowing more advanced
mechanisms and policies to be added via user-created kernel modules or via
user programs themselves. As an example, consider the history of UNIX. At
first, it had a time-sharing scheduler. In the latest version of Solaris, scheduling
is controlled by loadable tables. Depending on the table currently loaded,
the system can be time shared, batch processing, real time, fair share, or
any combination. Making the scheduling mechanism general purpose allows
vast policy changes to be made with a single load-new-table command. At
the other extreme is a system such as Windows, in which both mechanism
and policy are encoded in the system to enforce a global look and feel. All
applications have similar interfaces, because the interface itself is built into
the kernel and system libraries. The Mac OS X operating system has similar
functionality.

Policy decisions are important for all resource allocation. Whenever it is
necessary to decide whether or not to allocate a resource, a policy decision must
be made. Whenever the question is ow rather than what, it is a mechanism that
must be determined.

2.6.3 Implementation

Once an operating system is designed, it must be implemented. Traditionally,
operating systems have been written in assembly language. Now, however,
they are most commonly written in higher-level languages such as C or C++.

The first system that was not written in assembly language was probably
the Master Control Program (MCP) for Burroughs computers. MCP was written
in a variant of ALGOL. MULTICS, developed at MIT, was written mainly in
PL/1. The Linux and Windows XP operating systems are written mostly in C,
although there are some small sections of assembly code for device drivers and
for saving and restoring the state of registers.

The advantages of using a higher-level language, or at least a systems-_
implementation language, for implementing operating systems are the same
as those accrued when the language is used for application programs: The
code can be written faster, is more compact, and is easier to understand and
debug. In addition, improvements in compiler technology will improve the
generated code for the entire operating system by simple recompilation. Finally,
an operating system is far easier to port—to move to some other hardware—
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if it is written in a higher-level language. For example, MS-DOS was written in
Inte] 8088 assembly language. Consequently, it is available on only the Intel
family of CPUs. The Linux operating system, in contrast, is written mostly in C
and is available on a number of different CPUs, including Intel 80X86, Motorola
680X0, SPARC, and MIPS RX000.

The only possible disadvantages of implementing an operating system in a
higher-level language are reduced speed and increased storage requirements.
This, however, is no longer a major issue in today’s systems. Although an
expert assembly-language programmer can produce efficient small routines,
for large programs a modern compiler can perform complex analysis and apply
sophisticated optimizations that produce excellent code. Modern processors
have deep pipelining and multiple functional units that can handle complex
dependencies that can overwhelm the limited ability of the human mind to
keep track of details.

As is true in other systems, major performance improvements in operating
systems are more likely to be the result of better data structures and algorithms
than of excellent assembly-language code. In addition, although operating sys-
tems are large, only a small amount of the code is critical to high performance;
the memory manager and the CPU scheduler are probably the most critical rou-
tines. After the system is written and is working correctly, bottleneck routines
can be identified and can be replaced with assembly-language equivalents.

To identify bottlenecks, we must be able to monitor system performance.
Code must be added to compute and display measures of system behavior.
In a number of systems, the operating system does this task by producing
trace listings of system behavior. All interesting events are logged with their
time and important parameters and are written to a file. Later, an analysis
program can process the log file to determine system performance and to
identify bottlenecks and inefficiencies. These same traces can be run as input
for a simulation of a suggested improved system. Traces also can help people
to find errors in operating-system behavior.

Operating-System Structure

A system as large and complex as a modern operating system must be
engineered carefully if it is to function properly and be modified easily. A
common approach is to partition the task into small components rather than
have one monolithic system. Each of these modules should be a well-defined
portion of the system, with carefully defined inputs, outputs, and functions.
We have already discussed briefly in Chapter 1 the common components
of operating systems. In this section, we discuss how these components are
interconnected and melded into a kernel.

2.71 Simple Structure

Many commercial systems do not have well-defined structures. Frequently,
such operating systems started as small, simple, and limited systems and then
grew beyond their original scope. MS-DOS is an example of such a system. It was
originally designed and implemented by a few people who had no idea that it
would become so popular. It was written to provide the most functionality in
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Figure 2.10 MS-DOS layer structure.

the least space, so it was not divided into modules carefully. Figure 2.10 shows
its structure.

In MS-DOS, the interfaces and levels of functionality are not well separated.
For instance, application programs are able to access the basic 1/0 routines
to write directly to the display and disk drives. Such freedom leaves MS-DOS
vulnerable to errant (or malicious) programs, causing entire system crashes
when user programs fail. Of course, MS-DOS was also limited by the hardware
of its era. Because the Intel 8088 for which it was written provides no dual
mode and no hardware protection, the designers of MS-DOS had no choice but
to leave the base hardware accessible. '

Another example of limited structuring is the original UNIX operating
system. UNIX is another system that initially was limited by hardware function-
ality. It consists of two separable parts: the kernel and the system programs.
The kernel is further separated into a series of interfaces and device drivers,
which have been added and expanded over the years as UNIX has evolved. We
can view the traditional UNIX operating system as being layered, as shown in
Figure 2.11. Everything below the system call interface and above the physical
hardware is the kernel. The kernel provides the file system, CPU scheduling,
memory management, and other operating-system functions through system
calls. Taken in sum, that is an enormous amount of functionality to be com-
bined into one level. This monolithic structure was difficult to implement and
maintain.

2.7.2 Layered Approach

With proper hardware support, operating systems can be broken into pieces
that are smaller and more appropriate than those allowed by the original
MS-DOS or UNIX systems. The operating system can then retain much greater
control over the computer and over the applications that make use of that
computer. Implementers have more freedom in changing the inner workings
of the system and in creating modular operating systems. Under the top-
down approach, the overall functionality and features are determined and are
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separated into components. Information hiding is also important, because it
leaves programmers free to implement the low-level routines as they see fit,
provided that the external interface of the routine stays unchanged and that
the routine itself performs the advertised task.

A system can be made modular in many ways. One method is the layered
approach, in which the operating system is broken up into a number of layers
(levels). The bottom layer (layer 0) is the hardware; the highest (layer N) is the
user interface. This layering structure is depicted in Figure 2.12.

An operating-system layer is an implementation of an abstract object made
up of data and the operations that can manipulate those data. A typical
operating-system layer—say, layer M—consists of data structures and a set
of routines that can be invoked by higher-level layers. Layer M, in turn, can
invoke operations on lower-level layers.

The main advantage of the layered approach is simplicity of construction
and debugging. The layers are selected so that each uses functions (operations)
and services of only lower-level layers. This approach simplifies debugging
and system verification. The first layer can be debugged without any concern
for the rest of the system, because, by definition, it uses only the basic hardware
(which is assumed correct) to implement its functions. Once the first layer is
debugged, its correct functioning can be assumed while the second layer is
debugged, and so on. If an error is found during the debugging of a particular
layer, the error must be on that layer, because the layers below it are already
debugged. Thus, the design and implementation of the system is simplified.

Each layer is implemented with only those operations provided by lower-
level layers. A layer does not need to know how these operations are-
implemented; it needs to know only what these operations do. Hence, each
layer hides the existence of certain data structures, operations, and hardware
from higher-level layers.

The major difficulty with the layered approach involves appropriately
defining the various layers. Because a layer can use only lower-level layers,
careful planning is necessary. For example, the device driver for the backing



2.7 Operating-System Structure 61

e S 2
T layerN T ~

.

7 user interface ™~

layer1

N

layer O
hardware

4

Figure 2.12 A layered operating system.

store (disk space used by virtual-memory algorithms) must be at a lower
level than the memory-management routines, because memory management
requires the ability to use the backing store.

Other requirements may not be so obvious. The backing-store driver would
normally be above the CPU scheduler, because the driver may need to wait for
1/0 and the CPU can be rescheduled during this time. However, on a large
system, the CPU scheduler may have more information about all the active
processes than can fit in memory. Therefore, this information may need to be
swapped in and out of memory, requiring the backing-store driver routine to
be below the CPU scheduler.

A final problem with layered implementations is that they tend to be less
efficient than other types. For instance, when a user program executes an 1/0
operation, it executes a system call that is trapped to the 1/0 layer, which calls
the memory-management layer, which in turn calls the CPU-scheduling layer,
which is then passed to the hardware. At each layer, the parameters may be
modified, data may need to be passed, and so on. Each layer adds overhead to
the system call; the net result is a system call that takes longer than does one
on a nonlayered system.

These limitations have caused a small backlash against layering in recent
years. Fewer layers with more functionality are being designed, providing most
of the advantages of modularized code while avoiding the difficult problems
of layer definition and interaction.

2.7.3 Microkernels

We have already seen that as UNIX expanded, the kernel became large
and difficult to manage. In the mid-1980s, researchers at Carnegie Mellon
University developed an operating system called Mach that modularized
the kernel using the microkernel approach. This method structures the
operating system by removing all nonessential components from the kernel and
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implementing them as system and user-level programs. The result is a srhaller
kernel. There is little consensus regarding which services should remain in the
kernel and which should be implemented in user space. Typically, however,
microkernels provide minimal process and memory management, in addition
to a communication facility.

The main function of the microkernel is to provide a communication facility
between the client program and the various services that are also running
in user space. Communication is provided by message passing, which was
described in Section 2.4.5. For example, if the client program wishes to access
a file, it must interact with the file server. The client program and service never
interact directly. Rather, they communicate indirectly by exchanging messages
with the microkernel.

One benefit of the microkernel approach is ease of extending the operating
system. All new services are added to user space and consequently do not
require modification of the kernel. When the kernel does have to be modified,
the changes tend to be fewer, because the microkernel is a smaller kernel.
The resulting operating system is easier to port from one hardware design
to another. The microkernel also provides more security and reliability, since
most services are running as user —rather than kernel—processes. If a service
fails, the rest of the operating system remains untouched.

Several contemporary operating systems have used the microkernel
approach. Tru64 UNIX (formerly Digital UNIX) provides a UNIX interface to
the user, but it is implemented with a Mach kernel. The Mach kernel maps
UNIX system calls into messages to the appropriate user-level services.

Another example is QNX. QNX is a real-time operating system that is also
based on the microkernel design. The QNX microkernel provides services
for message passing and process scheduling. It also handles low-level net-
work communication and hardware interrupts. All other services in QNX are
provided by standard processes that run outside the kernel in user mode.

Unfortunately, microkernels can suffer from performance decreases due
to increased system function overhead. Consider the history of Windows NT.
The first release had a layered microkernel organization. However, this version
delivered low performance compared with that of Windows 95. Windows NT
4.0 partially redressed the performance problem by moving layers from user
space to kernel space and integrating them more closely. By the time Windows
XP was designed, its architecture was more monolithic than microkernel.

2.7.4 Modules

Perhaps the best current methodology for operating-system design involves
using object-oriented programming techniques to create a modular kernel.
Here, the kernel has a set of core components and dynamically links in
additional services either during boot time or during run time. Such a
strategy uses dynamically loadable modules and is common in modern
implementations of UNIX, such as Solaris, Linux, and Mac O$ X. For example, the
Solaris operating system structure, shown in Figure 2.13, is organized around
a core kernel with seven types of loadable kernel modules:

1. Scheduling classes

2. File systems
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3. Loadable system calls
4. Executable formats

5. STREAMS modules

6. Miscellaneous

7.

Device and bus drivers

Such a design allows the kernel to provide core services yet also allows
certain features to be implemented dynamically. For example, device and
bus drivers for specific hardware can be added to the kernel, and support
for different file systems can be added as loadable modules. The overall
result resembles a layered system in that each kernel section has defined,
protected interfaces; but it is more flexible than a layered system in that any
module can call any other module. Furthermore, the approach is like the
microkernel approach in that the primary module has only core functions
and knowledge of how to load and communicate with other modules; but it
is more efficient, because modules do not need to invoke message passing in
order to communicate.

The Apple Macintosh Mac OS X operating system uses a hybrid structure.
Mac OS$ X (also known as Darwin) structures the operating system using a
layered technique where one layer consists of the Mach microkernel. The
structure of Mac OS X appears in Figure 2.14.

The top layers include application environments and a set of services
providing a graphical interface to applications. Below these layers is the kernel
environment, which consists primarily of the Mach microkernel and the BSD
kernel. Mach provides memory management; support for remote procedure
calls (RPCs) and interprocess communication (IPC) facilities, including message
passing; and thread scheduling. The BSD component provides a BSD command
line interface, support for networking and file systems, and an implementation
of POSIX APIs, including Pthreads. In addition to Mach and BSD, the kernel
environment provides an 1/0 kit for development of device drivers and
dynamically loadable modules (which Mac OS X refers to as kernel extensions).
As shown in the figure, applications and common services can make use of
either the Mach or BSD facilities directly.
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Virtual Machines

The layered approach described in Section 2.7.2 is taken to its logical conclusion
in the concept of a virtual machine. The fundamental idea behind a virtual
machine is to abstract the hardware of a single computer (the CPU, memory,
disk drives, network interface cards, and so forth) into several different
execution environments, thereby creating the illusion that each separate
execution environment is running its own private computer.

By using CPU scheduling (Chapter 5) and virtual-memory techniques
(Chapter 9), an operating system can create the illusion that a process has
its own processor with its own (virtual) memory. Normally, a process has
additional features, such as system calls and a file system, that are not provided
by the bare hardware. The virtual-machine approach does not provide any such
additional functionality but rather provides an interface that is identical to the
underlying bare hardware. Each process is provided with a (virtual) copy of
the underlying computer (Figure 2.15).

There are several reasons for creating a virtual machine, all of which
are fundamentally related to being able to share the same hardware yet run
several different execution environments (that is, different operating systems)
concurrently. We will explore the advantages of virtual machines in more detail
in Section 2.8.2. Throughout much of this section, we discuss the VM operating
system for IBM systems, as it provides a useful working example; furthermore
IBM pioneered the work in this area.

A major difficulty with the virtual-machine approach involves disk sys-
tems. Suppose that the physical machine has three disk drives but wants to
support seven virtual machines. Clearly, it cannot allocate a disk drive to
each virtual machine, because the virtual-machine software itself will need
substantial disk space to provide virtual memory and spooling. The solution
is to provide virtual disks—termed minidisks in IBM’s VM operating system -
—that are identical in all respects except size. The system implements each
minidisk by allocating as many tracks on the physical disks as the minidisk
needs. Obviously, the sum of the sizes of all minidisks must be smaller than
the size of the physical disk space available.

Users thus are given their own virtual machines. They can then run any of
the operating systems or software packages that are available on the underlying
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machine. For the IBM VM system, a user normally runs CMS—a single-user
interactive operating system. The virtual-machine software is concerned with
multiprogramming multiple virtual machines onto a physical machine, but it
does not need to consider any user-support software. This arrangement may
provide a useful way to divide the problem of designing a multiuser interactive
system into two smaller pieces.

2.8.1 Implementation

Although the virtual-machine concept is useful, it is difficult to implement.
Much work is required to provide an exact duplicate of the underlying machine.
Remember that the underlying machine has two modes: user mode and kernel
mode. The virtual-machine software can run in kernel mode, since it is the
operating system. The virtual machine itself can execute in only user mode.
Just as the physical machine has two modes, however, so must the virtual
machine. Consequently, we must have a virtual user mode and a virtual kernel
mode, both of which run in a physical user mode. Those actions that cause a
transfer from user mode to kernel mode on a real machine (such as a system
call or an attempt to execute a privileged instruction) must also cause a transfer
from virtual user mode to virtual kernel mode on a virtual machine.

Such a transfer can be accomplished as follows. When a system call, for
example, is made by a program running on a virtual machine in virtual user
mode, it will cause a transfer to the virtual-machine monitor in the real machine.
When the virtual-machine monitor gains control, it can change the register
contents and program counter for the virtual machine to simulate the effect of
the system call. It can then restart the virtual machine, noting that it is now in
virtual kernel mode.

The major difference, of course, is time. Whereas the real I/0 might have
taken 100 milliseconds, the virtual 1/0 might take less time (because it is
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spooled) or more time (because it is interpreted). In addition, the CPU is
being multiprogrammed among many virtual machines, further slowing down
the virtual machines in unpredictable ways. In the extreme case, it may be
necessary to simulate all instructions to provide a true virtual machine. VM
works for IBM machines because normal instructions for the virtual machines
can execute directly on the hardware. Only the privileged instructions (needed
mainly for I/0) must be simulated and hence execute more slowly.

2.8.2 Benefits

The virtual-machine concept has several advantages. Notice that, in this
environment, there is complete protection of the various system resources.
Each virtual machine is completely isolated from all other virtual machines,
so there are no protection problems. At the same time, however, there is no
direct sharing of resources. Two approaches to provide sharing have been
implemented. First, it is possible to share a minidisk and thus to share files.
This scheme is modeled after a physical shared disk but is implemented by
software. Second, it is possible to define a network of virtual machines, each
of which can send information over the virtual communications network.
Again, the network is modeled after physical communication networks but
is implemented in software.

Such a virtual-machine system is a perfect vehicle for operating-systems
research and development. Normally, changing an operating system is a
difficult task. Operating systems are large and complex programs, and it is
difficult to be sure that a change in one part will not cause obscure bugs
in some other part. The power of the operating system makes changing it
particularly dangerous. Because the operating system executes in kernel mode,
a wrong change in a pointer could cause an error that would destroy the entire
file system. Thus, it is necessary to test all changes to the operating system
carefully.

The operating system, however, runs on and controls the entire machine.
Therefore, the current system must be stopped and taken out of use while
changes are made and tested. This period is commonly called system-
development time. Since it makes the system unavailable to users, system-
development time is often scheduled late at night or on weekends, when system
load is low.

A virtual-machine system can eliminate much of this problem. System
programmers are given their own virtual machine, and system development is
done on the virtual machine instead of on a physical machine. Normal system
operation seldom needs to be disrupted for system development.

2.8.3 Examples

Despite the advantages of virtual machines, they received little attention- -
for a number of years after they were first developed. Today, however,
virtual machines are coming back into fashion as a means of solving system
compatibility problems. In this section, we explore two popular contemporary
virtual machines: VMware and the Java virtual machine. As we will see,
these virtual machines typically run on top of an operating system of any of
the design types discussed earlier. Thus, operating system design methods—
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simple layers, microkernel, modules, and virtual machines—are not mutually
exclusive.

2.8.3.1 VMware

VMware is a popular commercial application that abstracts Intel 80X86
hardware into isolated virtual machines. VMware runs as an application on a
host operating system such as Windows or Linux and allows this host system
to concurrently run several different guest operating systems as independent
virtual machines.

Consider the following scenario: A developer has designed an application
and would like to test it on Linux, FreeBSD, Windows NT, and Windows XP. One
option is for her to obtain four different computers, each running a copy of one
of these operating systems. Another alternative is for her first to install Linux
on a computer system and test the application, then to install FreeBSD and test
the application, and so forth. This option allows her to use the same physical
computer but is time-consuming, since she must install anew operating system
for each test. Such testing could be accomplished concurrently on the same
physical computer using VMware. In this case, the programmer could test the
application on a host operating system and on three guest operating systems
with each system running as a separate virtual machine.

The architecture of such a system is shown in Figure 2.16. In this scenario,
Linux is running as the host operating system; FreeBSD, Windows NT, and
Windows XP are running as guest operating systems. The virtualization layer
is the heart of VMware, as it abstracts the physical hardware into isolated
virtual machines running as guest operating systems. Each virtual machine
has its own virtual CPU, memory, disk drives, network interfaces, and so forth.

application application application application

guest operating guest operating guest operating

system system system:
(free BSD) (Windows NT) (Windows XP)
virtual CPU virtual CPU virtual CPU.
virtual memory virtual memory virtual memory
virtual devices virtual devices virtual devices

. virtualization layer
hostoperating:system -
ALintixy
hardware
cPU 76 devices |

Figure 2.16 VMware architecture.
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2.8.3.2 The Java Virtual Machine ‘

Java is a popular object-oriented programming language introduced by Sun
Microsystems in 1995. In addition to a language specification and a large API
library, Java also provides a specification for a Java virtual machine—or JVM.

Java objects are specified with the class construct; a Java program
consists of one or more classes. For each Java class, the compiler produces
an architecture-neutral bytecode output (.class) file that will run on any
implementation of the JVM.

The JVMis a specification for an abstract computer. It consists of a class
loader and a Java interpreter that executes the architecture-neutral bytecodes,
as diagrammed in Figure 2.17. The class loader loads the compiled .class
files from both the Java program and the Java API for execution by the Java
interpreter. After a class is loaded, the verifier checks that the .class file is
valid Java bytecode and does not overflow or underflow the stack. It also
ensures that the bytecode does not perform pointer arithmetic, which could
provide illegal memory access. If the class passes verification, it is run by the
Java interpreter. The JVM also automatically manages memory by performing
garbage collection —the practice of reclaiming memory from objects no longer
in use and returning it to the system. Much research focuses on garbage
collection algorithms for increasing the performance of Java programs in the
virtual machine.

The JVM may be implemented in software on top of a host operating
system, such as Windows, Linux, or Mac OS X, or as part of a web browser.
Alternatively, the JvM may be implemented in hardware on a chip specifically
designed to run Java programs. If the JVM is implemented in software, the
Java interpreter interprets the bytecode operations one at a time. A faster
software technique is to use a just-in-time (JIT) compiler. Here, the first time a
Java method is invoked, the bytecodes for the method are turned into native
machine language for the host system. These operations are then cached so that
subsequent invocations of a method are performed using the native machine
instructions and the bytecode operations need not be interpreted all over again.
A technique that is potentially even faster is to run the JVM in hardware on a
special Java chip that executes the Java bytecode operations as native code, thus
bypassing the need for either a software interpreter or a just-in-time compiler.

Java program
class files

| interpreter l

y

 hostsystem
(Windows, Linux, etc.)

Figure 2,17 The Java virtual machine.
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At the core of the .NET Framework is the Common Language Runnme :
(CLR). The CLR is the implementation of the .NET virtual machine. It provides
an environment for execution of programs written in any of the languages
targeted at the .NET Framework. Programs written in languages such-as
C# (pronounced C-sharp) and VB.NET are complled into an 1ntermed1ate,
(MS-IL). These compiled files, called assembhes, mclude MS—IL instructions
and metadata. They have a file extension of either .EXE or .DLL. Upon
execution of a program, the CLR loads assemblies into what is known as
the Application Domain. As instructions are requested by the executing
program, the CLR converts the MS-IL instructions inside the assemblies into .
native code that is specific to the underlying architecture using just-in-time
compilation. Once instructions have been converted to native code, they are
kept and will continue to run as native code for the CPU. The archltecmre of
the CLR for the .NET framework is shown in Figure 2.18. s
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Figure 2.18 Architecture of the CLR for the .'NéTvveramewobrk. :



70

2.9

Chapter 2 Operating-System Structures
Operating-System Generation 2

It is possible to design, code, and implement an operating system specifically
for one machine at one site. More commonly, however, operating systems
are designed to run on any of a class of machines at a variety of sites with
a variety of peripheral configurations. The system must then be configured
or generated for each specific computer site, a process sometimes known as
system generation (SYSGEN).

The operating system is normally distributed on disk or CD-ROM. To
generate a system, we use a special program. The SYSGEN program reads from
a given file, or asks the operator of the system for information concerning the
specific configuration of the hardware system, or probes the hardware directly
to determine what components are there. The following kinds of information
must be determined.

e What CPU is to be used? What options (extended instruction sets, floating-
point arithmetic, and so on) are installed? For multiple CPU systems, each
CPU must be described.

¢ How much memory is available? Some systems will determine this value
themselves by referencing memory location after memory location until an
“illegal address” fault is generated. This procedure defines the final legal
address and hence the amount of available memory.

e What devices are available? The system will need to know how to address
each device (the device number), the device interrupt number, the device’s
type and model, and any special device characteristics.

® What operating-system options are desired, or what parameter values are
to be used? These options or values might include how many buffers of
which sizes should be used, what type of CPU-scheduling algorithm is
desired, what the maximum number of processes to be supported is, and
SO on.

Once this information is determined, it can be used in several ways. At one
extreme, a system administrator can use it to modify a copy of the source code of
the operating system. The operating system then is completely compiled. Data
declarations, initializations, and constants, along with conditional compilation,
produce an output object version of the operating system that is tailored to the
system described.

At a slightly less tailored level, the system description can cause the
creation of tables and the selection of modules from a precompiled library.
These modules are linked together to form the generated operating system.
Selection allows the library to contain the device drivers for all supported 1/0
devices, but only those needed are linked into the operating system. Because.
the system is not recompiled, system generation is faster, but the resulting
system may be overly general.

At the other extreme, it is possible to construct a system that is completely
table driven. All the code is always part of the system, and selection occurs at
execution time, rather than at compile or link time. System generation involves
simply creating the appropriate tables to describe the system.
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The major differences among these approaches are the size and geneyality
of the generated system and the ease of modification as the hardware
configuration changes. Consider the cost of modifying the system to support a
newly acquired graphics terminal or another disk drive. Balanced against that
cost, of course, is the frequency (or infrequency) of such changes.

System Boot

After an operating system is generated, it must be made available for use by
the hardware. But how does the hardware know where the kernel is or how to
load that kernel? The procedure of starting a computer by loading the kernel
is known as booting the system. On most computer systems, a small piece of
code known as the bootstrap program or bootstrap loader locates the kernel,
loads it into main memory, and starts its execution. Some computer systems,
such as Cs, use a two-step process in which a simple bootstrap loader fetches
a more complex boot program from disk, which in turn loads the kernel.

When a CPU receives a reset event—for instance, when it is powered up
or rebooted —the instruction register is loaded with a predefined memory
location, and execution starts there. At that location is the initial bootstrap
program. This program is in the form of read-only memory (ROM), because
the RAM is in an unknown state at system startup. ROM is convenient because
it needs no initialization and cannot be infected by a computer virus.

The bootstrap program can perform a variety of tasks. Usually, one task
is to run diagnostics to determine the state of the machine. If the diagnostics
pass, the program can continue with the booting steps. It can also initialize all
aspects of the system, from CPU registers to device controllers and the contents
of main memory. Sooner or later, it starts the operating system.

Some systems—such as cellular phones, PDAs, and game consoles—store
the entire operating system in ROM. Storing the operating system in ROM is
suitable for small operating systems, simple supporting hardware, and rugged
operation. A problem with this approach is that changing the bootstrap code
requires changing the ROM hardware chips. Some systems resolve this problem
by using erasable programmable read-only memory (EPROM), which is read-
only except when explicitly given a command to become writable. All forms
of ROM are also known as firmware, since their characteristics fall somewhere
between those of hardware and those of software. A problem with firmware
in general is that executing code there is slower than executing code in RAM.
Some systems store the operating system in firmware and copy it to RAM for
fast execution. A final issue with firmware is that it is relatively expensive, so
usually only small amounts are available.

For large operating systems (including most general-purpose operating
systems like Windows, Mac OS X, and UNIX) or for systems that change
frequently, the bootstrap loader is stored in firmware, and the operating system
is on disk. In this case, the bootstrap runs diagnostics and has a bit of code
that can read a single block at a fixed location (say block zero) from disk into
memory and execute the code from that boot block. The program stored in the
boot block may be sophisticated enough to load the entire operating system
into memory and begin its execution. More typically, it is simple code (as it fits
in a single disk block) and only knows the address on disk and length of the
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remainder of the bootstrap program. All of the disk-bound bootstrap, ard the
operating system itself, can be easily changed by writing new versions to disk.
A disk that has a boot partition (more on that in section 12.5.1) is called a boot
disk or system disk.

Now that the full bootstrap program has been loaded, it can traverse the
file system to find the operating system kernel, load it into memory, and start
its execution. It is only at this point that the system is said to be running.

Summary

Operating systems provide a number of services. At the lowest level, system
calls allow a running program to make requests from the operating system
directly. At a higher level, the command interpreter or shell provides a
mechanism for a user to issue a request without writing a program. Commands
may come from files during batch-mode execution or directly from a terminal
when in an interactive or time-shared mode. System programs are provided to
satisfy many common user requests.

The types of requests vary according to level. The system-call level must
provide the basic functions, such as process control and file and device
manipulation. Higher-level requests, satisfied by the command interpreter or
system programs, are translated into a sequence of system calls. System services
can be classified into several categories: program control, status requests, and
I/0 requests. Program errors can be considered implicit requests for service.

Once the system services are defined, the structure of the operating system
can be developed. Various tables are needed to record the information that
defines the state of the computer system and the status of the system’s jobs.

The design of a new operating system is a major task. It is important that
the goals of the system be well defined before the design begins. The type of
system desired is the foundation for choices among various algorithms and
strategies that will be needed.

Since an operating system is large, modularity is important. Designing a
system as a sequence of layers or using a microkernel is considered a good
technique. The virtual-machine concept takes the layered approach and treats
both the kernel of the operating system and the hardware as though they were
hardware. Even other operating systems may be loaded on top of this virtual
machine.

Throughout the entire operating-system design cycle, we must be careful
to separate policy decisions from implementation details (mechanisms). This
separation allows maximum flexibility if policy decisions are to be changed
later.

Operating systems are now almost always written in a systems-
implementation language or in a higher-level language. This feature improves
their implementation, maintenance, and portability. To create an operating .
system for a particular machine configuration, we must perform system
generation.

For a computer system to begin running, the CPU must initialize and start
executing the bootstrap program in firmware. The bootstrap can execute the
operating system directly if the operating system is also in the firmware, or
it can complete a sequence in which it loads progressively smarter programs
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from firmware and disk until the operating system itself is loaded into memory
and executed.

Exercises

2.1

2.2

2.3

24

2.5

2.6

2.7
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211

212

2.13

2.14

The services and functions provided by an operating system can be
divided into two main categories. Briefly describe the two categories
and discuss how they differ.

List five services provided by an operating system that are designed to
make it more convenient for users to use the computer system. In what
cases it would be impossible for user-level programs to provide these
services? Explain.

Describe three general methods for passing parameters to the operating
system.

Describe how you could obtain a statistical profile of the amount of time
spent by a program executing different sections of its code. Discuss the
importance of obtaining such a statistical profile.

What are the five major activities of an operating system with regard to
file management?

What are the advantages and disadvantages of using the same system-
call interface for manipulating both files and devices?

What is the purpose of the command interpreter? Why is it usually
separate from the kernel? Would it be possible for the user to develop
anew command interpreter using the system-call interface provided by
the operating system?

What are the two models of interprocess communication? What are the
strengths and weaknesses of the two approaches?

Why is the separation of mechanism and policy desirable?

Why does Java provide the ability to call from a Java program native
methods that are written in, say, C or C++? Provide an example of a
situation in which a native method is useful.

It is sometimes difficult to achieve a layered approach if two components
of the operating system are dependent on each other. Identify a scenario
in which it is unclear how to layer two system components that require
tight coupling of their functionalities.

What is the main advantage of the microkernel approach to system
design? How do user programs and system services interact in a
microkernel architecture? What are the disadvantages of using the
microkernel approach?

In what ways is the modular kernel approach similar to the layered
approach? In what ways does it differ from the layered approach?

What is the main advantage for an operating-system designer of using
a virtual-machine architecture? What is the main advantage for a user?
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2.15 Why is a just-in-time compiler useful for executing Java programs?

216 What is the relationship between a guest operating system and a host
operating system in a system like VMware? What factors need to be
considered in choosing the host operating system?

2.17 The experimental Synthesis operating system has an assembler incor-
porated in the kernel. To optimize system-call performance, the kernel
assembles routines within kernel space to minimize the path that the
system call must take through the kernel. This approach is the antithesis
of the layered approach, in which the path through the kernel is extended
to make building the operating system easier. Discuss the pros and cons
of the Synthesis approach to kernel design and system-performance
optimization. :

2.18 InSection 2.3, we described a program that copies the contents of one file
to a destination file. This program works by first prompting the user for
the name of the source and destination files. Write this program using
either the Windows32 or POSIX APIL Be sure to include all necessary
error checking, including ensuring that the source file exists. Once you
have correctly designed and tested the program, if you used a system
that supports it, run the program using a utility that traces system calls.
Linux systems provide the ptrace utility, and Solaris systems use the
truss or dtrace command. On Mac OS X, the ktrace facility provides
similar functionality.

Project—Adding a System Calll to the Linux Kernel

In this project, you will study the system call interface provided by the Linux
operating system and how user programs communicate with the operating
system kernel via this interface. Your task is to incorporate a new system call
into the kernel, thereby expanding the functionality of the operating system.

Getting Started

A user-mode procedure call is performed by passing arguments to the called
procedure either on the stack or through registers, saving the current state and
the value of the program counter, and jumping to the beginning of the code
corresponding to the called procedure. The process continues to have the same
privileges as before.

System calls appear as procedure calls to user programs, but result in
a change in execution context and privileges. In Linux on the Intel 386
architecture, a system call is accomplished by storing the system call number
into the EAX register, storing arguments to the system call in other hardware .
registers, and executing a trap instruction (which is the INT 0x80 assembly
instruction). After the trap is executed, the system call number is used to index
into a table of code pointers to obtain the starting address for the handler
code implementing the system call. The process then jumps to this address
and the privileges of the process are switched from user to kernel mode. With
the expanded privileges, the process can now execute kernel code that might
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include privileged instructions that cannot be executed in user mode, The
kernel code can then perform the requested services such as interacting with
1/0 devices, perform process management and other such activities that cannot
be performed in user mode.

The system call numbers for recent versions of the Linux kernel
are listed in /usr/src/linux-2.x/include/asm-i386/unistd.h. (For
instance, __NR_close, which corresponds to the system call close()
that is invoked for closing a file descriptor, is defined as value 6.) The
list of pointers to system call handlers is typically stored in the file
/usr/src/linux-2.x/arch/i386/kernel/entry.S under the heading
ENTRY (sys_call table). Notice that sys_close is stored at entry numbered
6 in the table to be consistent with the system call number defined in unistd.h
file. (The keyword .long denotes that the entry will occupy the same number
of bytes as a data value of type long.)

Building a New Kernel

Before adding a system call to the kernel, you must familiarize yourself with
the task of building the binary for a kernel from its source code and booting
the machine with the newly built kernel. This activity comprises the following
tasks, some of which are dependent on the particular installation of the Linux
operating system.

¢ Obtain the kernel source code for the Linux distribution. If the source code
package has been previously installed on your machine, the corresponding
files might be available under /usr/src/linux or /usr/src/linux-2.x
(where the suffix corresponds to the kernel version number). If the package
has not been installed earlier, it can be downloaded from the provider of
your Linux distribution or from http://www.kernel.org.

® Jlearn how to configure, compile, and install the kernel binary. This
will vary between the different kernel distributions, but some typical
commands for building the kernel (after entering the directory where the
kernel source code is stored) include:

© make xconfig
© make dep

© make bzImage

* Add a new entry to the set of bootable kernels supported by the system.
The Linux operating system typically uses utilities such as 1ilo and grub
to maintain a list of bootable kernels, from which the user can choose
during machine boot-up. If your system supports 1ilo, add an entry to
1lilo.conf, such as:

image=/boot /bzlmage.mykernel
label=mykernel
root=/dev/hdas

read-only

where /boot/bzImage.mykernel is the kernel image and mykernel is
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the label associated with the new kernel allowing you to choose it during
bootup process. By performing this step, you have the option of either
booting a new kernel or booting the unmodified kernel if the newly built
kernel does not function properly.

Extending Kernel Source

You can now experiment with adding a new file to the set of source files
used for compiling the kernel. Typically, the source code is stored in the
/usr/src/linux-2.x/kernel directory, although that location may differ in
your Linux distribution. There are two options for adding the system call.
The first is to add the system call to an existing source file in this directory.
A second option is to create a new file in the source directory and modify
/usr/src/linux-2.x/kernel/Makefile to include the newly created file
in the compilation process. The advantage of the first approach is that by
modifying an existing file that is already part of the compilation process, the
Makefile does not require modification.

Adding a System Call to the Kernel

Now that you are familiar with the various background tasks corresponding
to building and booting Linux kernels, you can begin the process of adding a
new system call to the Linux kernel. In this project, the system call will have
limited functionality; it will simply transition from user mode to kernel mode,
print a message that is logged with the kernel messages, and transition back to
user mode. We will call this the helloworld system call. While it has only limited
functionality, it illustrates the system call mechanism and sheds light on the
interaction between user programs and the kernel.

¢ Create a new file called helloworld. c to define your system call. Include
the header files 1inux/linkage.h and linux/kernel.h. Add the follow-
ing code to this file:

#include <linux/linkage.h>

#include <linux/kernel.h>

asmlinkage int sys_helloworld() {
printk (KERN.EMERG '"hello world!");

return 1;

}

This creates a system call with the name sys_helloworld().If you choose
to add this system call to an existing file in the source directory, all that is
necessary is to add the sys_helloworld() function to the file you choose.
asmlinkage is a remnant from the days when Linux used both C++
and C code and is used to indicate that the code is written in C.
The printk() function is used to print messages to a kernel log file
and therefore may only be called from the kernel. The kernel mes-
sages specified in the parameter to printk() are logged in the file
/var/log/kernel/warnings. The function prototype for the printk()
call is defined in /usr/include/linux/kernel.h.
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® Define a new system call number for _NR helloworld in
/usr/src/linux-2.x/include/asm-i386/unistd.h. A user program
can use this number to identify the newly added system call. Also be sure
to increment the value for __NR_syscalls, which is also stored in the same
file. This constant tracks the number of system calls currently defined in
the kernel.

* Add an entry .long sys_helloworld to the sys_call table defined
in /usr/src/linux-2.x/arch/i1386/kernel/entry.S file. As discussed
earlier, the system call number is used to index into this table to find the
position of the handler code for the invoked system call.

® Add your file helloworld.c to the Makefile (if you created a new file for
your system call.) Save a copy of your old kernel binary image (in case
there are problems with your newly created kernel.) You can now build
the new kernel, rename it to distinguish it from the unmodified kernel,
and add an entry to the loader configuration files (such as 1ilo.conf).
After completing these steps, you may now boot either the old kernel or
the new kernel that contains your system call inside it.

Using the System Call From a User Program

When you boot with the new kernel it will support the newly defined system
call; it is now simply a matter of invoking this system call from a user program.
Ordinarily, the standard C library supports an interface for system calls defined
for the Linux operating system. As your new system call is not linked into the
standard C library, invoking your system call will require manual intervention.

As noted earlier, a system call is invoked by storing the appropriate value
into a hardware register and performing a trap instruction. Unfortunately, these
are low-level operations that cannot be performed using C language statements
and instead require assembly instructions. Fortunately, Linux provides macros
for instantiating wrapper functions that contain the appropriate assembly
instructions. For instance, the following C program uses the _syscallO()
macro to invoke the newly defined system call:

#include <linux/errno.hs>
#include <sys/syscall.h>
#include <linux/unistd.h>

_syscallO(int, helloworld) ;

main ()

{

helloworld() ;

}

¢ The _syscallO macro takes two arguments. The first specifies the type of
the value returned by the system call; the second argument is the name of
the system call. The name is used to identify the system call number that
is stored in the hardware register before the trap instruction is executed.
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If your system call requires arguments, then a different macro (stch as
_syscall0, where the suffix indicates the number of arguments) could be
used to instantiate the assembly code required for performing the system
call.

®* Compile and execute the program with the newly built kernel.
There should be a message “hello world!” in the kernel log file
/var/log/kernel/warnings to indicate that the system call has
executed.

As a next step, consider expanding the functionality of your system call.
How would you pass an integer value or a character string to the system call
and have it be printed into the kernel log file? What are the implications for
passing pointers to data stored in the user program’s address space as opposed
to simply passing an integer value from the user program to the kernel using
hardware registers?
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regarding exokernel operating systems, where the architecture separates
management issues from protection, thereby giving untrusted software the
ability to exercise control over hardware and software resources.

The specifications for the Java language and the Java virtual machine are
presented by Gosling et al. [1996] and by Lindholm and Yellin [1999], respec-
tively. The internal workings of the Java virtual machine are fully described by
Venners [1998]. Golm et al. [2002] highlight the JX operating system; Back
et al. [2000] cover several issues in the design of Java operating systems.
More information on Java is available on the Web at http:/ / www.javasoft.com.
Details about the implementation of VMware can be found in Sugerman et al.
[2001].



Part Two

Process
Management

A process can be thought of as a program in execution. A process wiill
need certain resources—such as CPU time, memory, files, and I/0 devices
—to accomplish its task. These resources are allocated to the process
either when it is created or while it is executing.

A process is the unit of work in most systems. Systems consist of
a collection of processes: Operating-system processes execute system
code, and user processes execute user code. All these processes may
execute concurrently.

Although traditionally a process contained only a single thread of
control as it ran, most modern operating systems now support processes
that have muiltiple threads.

The operating system is responsible for the following activities in
connection with process and thread management: the creation and
deletion of both user and system processes; the scheduling of processes;
and the provision of mechanisms for synchronization, cormmunication,
and deadlock handling for processes.






Processes

3.1

Early computer systems allowed only one program to be executed at a
time. This program had complete control of the system and had access to
all the system'’s resources. In contrast, current-day computer systems allow
multiple programs to be loaded into memory and executed concurrently.
This evolution required firmer control and more compartmentalization of the
various programs; and these needs resulted in the notion of a process, which is
a program in execution. A process is the unit of work in a modern time-sharing
system.

The more complex the operating system is, the more it is expected to do on
behalf of its users. Although its main concern is the execution of user programs,
it also needs to take care of various system tasks that are better left outside the
kernel itself. A system therefore consists of a collection of processes: operating-
system processes executing system code and user processes executing user
code. Potentially, all these processes can execute concurrently, with the CPU (or
Crus) multiplexed among them. By switching the CPU between processes, the
operating system can make the computer more productive.

CHAPTER OBJECTIVES

+ To introduce the notion of a process — a program in execution, which forms
the basis of all computation.

» To describe the various features of processes, including scheduling,
creation and termination, and communication.

¢ To describe communication in client—server systems.

Process Concept

A question that arises in discussing operating systems involves what to call all
the CPU activities. A batch system executes jobs, whereas a time-shared system
has user programs, or tasks. Even on a single-user system such as Microsoft
Windows, a user may be able to run several programs at one time: a word
processor, a web browser, and an e-mail package. Even if the user can execute

81



82

Chapter 3 Processes

only one program at a time, the operating system may need to suppoft its
own internal programmed activities, such as memory management. In many
respects, all these activities are similar, so we call all of them processes.

The terms job and process are used almost interchangeably in this text.
Although we personally prefer the term process, much of operating-system
theory and terminology was developed during a time when the major activity
of operating systems was job processing. It would be misleading to avoid
the use of commonly accepted terms that include the word job (such as job
scheduling) simply because process has superseded job.

3.1.1 The Process

Informally, as mentioned earlier, a process is a program in execution. A process
is more than the program code, which is sometimes known as the text section.
It also includes the current activity, as represented by the value of the program
counter and the contents of the processor’s registers. A process generally also
includes the process stack, which contains temporary data (such as function
parameters, return addresses, and local variables), and a data section, which
contains global variables. A process may also include a heap, which is memory
thatis dynamically allocated during process run time. The structure of a process
in memory is shown in Figure 3.1.

We emphasize thata program by itself is not a process; a program is a passive
entity, such as a file containing a list of instructions stored on disk (often called
an executable file), whereas a process is an active entity, with a program counter
specifying the next instruction to execute and a set of associated resources. A
program becomes a process when an executable file is loaded into memory.
Two common techniques for loading executable files are double-clicking an
icon representing the executable file and entering the name of the executable
file on the command line (as in prog.exe or a.out.)

Although two processes may be associated with the same program, they
are nevertheless considered two separate execution sequences. For instance,

max —
Cstack
heap
data
t-éxt
0 .

Figure 3.1 Process in memory.
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Figure 3.2 Diagram of process state.

several users may be running different copies of the mail program, or the same
user may invoke many copies of the web browser program. Each of these is a
separate process; and although the text sections are equivalent, the data, heap,
and stack sections vary. It is also common to have a process that spawns many
processes as it runs. We discuss such matters in Section 3.4.

3.1.2 Process State

As a process executes, it changes state. The state of a process is defined in
part by the current activity of that process. Each process may be in one of the
following states:

® New. The process is being created.
¢ Running. Instructions are being executed.

* Waiting. The process is waiting for some event to occur (such as an I/0
completion or reception of a signal).

¢ Ready. The process is waiting to be assigned to a processor.

¢ Terminated. The process has finished execution.

These names are arbitrary, and they vary across operating systems. The states
that they represent are found on all systems, however. Certain operating
systems also more finely delineate process states. It is important to realize
that only one process can be running on any processor at any instant. Many
processes may be ready and waiting, however. The state diagram corresponding
to these states is presented in Figure 3.2.

3.1.3 Process Control Block

Each process is represented in the operating system by a process control block
(PCB)—also called a task control block. A PCB is shown in Figure 3.3. It contains
many pieces of information associated with a specific process, including these:

® Process state. The state may be new, ready, running, waiting, halted, and
SO On.
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Figure 3.3 Process control block (PCB).

® Program counter. The counter indicates the address of the next instruction
to be executed for this process.

® CPU registers. The registers vary in number and type, depending on
the computer architecture. They include accumulators, index registers,
stack pointers, and general-purpose registers, plus any condition-code
information. Along with the program counter, this state information must
be saved when an interrupt occurs, to allow the process to be continued
correctly afterward (Figure 3.4).

¢ CPU-scheduling information. This information includes a process priority,
pointers to scheduling queues, and any other scheduling parameters.
(Chapter 5 describes process scheduling.)

® Memory-management information. This information may include such
information as the value of the base and limit registers, the page tables,
or the segment tables, depending on the memory system used by the
operating system (Chapter 8).

® Accounting information. This information includes the amount of CPU
and real time used, time limits, account numbers, job or process numbers,
and so on.

® 1/0 status information. This information includes the list of 1/0 devices
allocated to the process, a list of open files, and so on.

In brief, the PCB simply serves as the repository for any information that may
vary from process to process.

3.1.4 Threads

The process model discussed so far has implied that a process is a program
that performs a single thread of execution. For example, when a process is
running a word-processor program, a single thread of instructions is being
executed. This single thread of control allows the process to perform only one
task at one time. The user cannot simultaneously type in characters and run the
spell checker within the same process, for example. Many modern operating
systems have extended the process concept to allow a process to have multiple
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Figure 3.4 Diagram showing CPU switch from process to process.

threads of execution and thus to perform more than one task at a time. Chapter
4 explores multithreaded processes in detail.

Process Scheduling

The objective of multiprogramming is to have some process running at all
times, to maximize CPU utilization. The objective of time sharing is to switch the
CPU among processes so frequently that users can interact with each program
while it is running. To meet these objectives, the process scheduler selects
an available process (possibly from a set of several available processes) for
program execution on the CPU. For a single-processor system, there will never
be more than one running process. If there are more processes, the rest will
have to wait until the CPU is free and can be rescheduled.

3.2.1 Scheduling Queues

As processes enter the system, they are put into a job queue, which consists
of all processes in the system. The processes that are residing in main memory
and are ready and waiting to execute are kept on a list called the ready queue.
This queue is generally stored as a linked list. A ready-queue header contains
pointers to the first and final PCBs in the list. Each PCB includes a pointer field
that points to the next PCB in the ready queue.

The system also includes other queues. When a process is allocated the
CPU, it executes for a while and eventually quits, is interrupted, or waits for
the occurrence of a particular event, such as the completion of an 1/0 request.
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scheduhng and memor} management mformatmn, hst of open ﬁles, and v
pomters to the process s parent and any of its children. (A process s parent is

pid.t pid‘ /* process 1dent;£;er */

long state; /* state of the process */ -
unsigned int ‘time _slice ./* 'scheduling information */
struct files.struct *files; /#* list of open files x/

struct mm struct *mm; /* address space of ‘this process ¥/

For example, the state of a process is represented by the field long state
in this structure. Within the Linux kernel, all active processes are represented
using a doubly linked list of task_struct, and the kernel maintains a pointer
~—current — to the process currently exectiting on the system. This is shown
in Figure 3.5.

'

struct task_struct

struct task_struct

SN

struct task_struct

process information process information PP process information
[ ] L] L]
L] L] L)
L] L ] L]
“current

(currently executing proccess).
"Figure 3.5 Active processes inLinux. 1

As-an illustration of how the kernel might manipulate one of the fieldsin
the task_struct for a'specified process, let's assume the system'would like
to change the state of the process currently running to the value new_ state.
If current is.a pointer to the process currently-executing, its state is changed
with the followmg

current->state = new.state;

Suppose the process makes an I/0 request to a shared device, such as a disk.
Since there are many processes in the system, the disk may be busy with the
1/0 request of some other process. The process therefore may have to wait for
the disk. The list of processes waiting for a particular 1/0 device is called a
device queue. Each device has its own device queue (Figure 3.6).
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Figure 3.6 The ready queue and various I/O device queues.

A common representation for a discussion of process scheduling is a
queueing diagram, such as that in Figure 3.7. Each rectangular box represents
a queue. Two types of queues are present: the ready queue and a set of device
queues. The circles represent the resources that serve the queues, and the
arrows indicate the flow of processes in the system.

A new process is initially put in the ready queue. It waits there until it is
selected for execution, or is dispatched. Once the process is allocated the CPU
and is executing, one of several events could occur:

e The process could issue an I/O request and then be placed in an 1/0 queue.

¢ The process could create a new subprocess and wait for the subprocess’s
termination.

e The process could be removed forcibly from the CPU, as a result of an
interrupt, and be put back in the ready queue.

In the first two cases, the process eventually switches from the waiting state

to the ready state and is then put back in the ready queue. A process continues

this cycle until it terminates, at which time it is removed from all queues and. . .

has its PCB and resources deallocated.

3.2.2 Schedulers

A process migrates among the various scheduling queues throughout its
lifetime. The operating system must select, for scheduling purposes, processes
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Figure 3.7 Queueing-diagram representation of process scheduling.

from these queues in some fashion. The selection process is carried out by the
appropriate scheduler.

Often, ina batch system, more processes are submitted than can be executed
immediately. These processes are spooled to a mass-storage device (typically a
disk), where they are kept for later execution. The long-term scheduler, or job
scheduler, selects processes from this pool and loads them into memory for
execution. The short-term scheduler, or CPU scheduler, selects from among
the processes that are ready to execute and allocates the CPU to one of them.

The primary distinction between these two schedulers lies in frequency
of execution. The short-term scheduler must select a new process for the CPU
frequently. A process may execute for only a few milliseconds before waiting
for an 1/0 request. Often, the short-term scheduler executes at least once every
100 milliseconds. Because of the short time between executions, the short-term
scheduler must be fast. If it takes 10 milliseconds to decide to execute a process
for 100 milliseconds, then 10/(100 + 10) = 9 percent of the CPU is being used
(wasted) simply for scheduling the work.

The long-term scheduler executes much less frequently; minutes may sep-
arate the creation of one new process and the next. The long-term scheduler
controls the degree of multiprogramming (the number of processes in mem-
ory). If the degree of multiprogramming is stable, then the average rate of
process creation must be equal to the average departure rate of processes
leaving the system. Thus, the long-term scheduler may need to be invoked
only when a process leaves the system. Because of the longer interval between
executions, the long-term scheduler can afford to take more time to decide
which process should be selected for execution.

It is important that the long-term scheduler make a careful selection. In
general, most processes can be described as either /O bound or CPUbound. An
1/0-bound process is one that spends more of its time doing 1/0 than it spends
doing computations. A CPU-bound process, in contrast, generates 1/0 requests
infrequently, using more of its time doing computations. [t is important that the
long-term scheduler select a good process mix of 1/0-bound and CPU-bound



3.2 Process Scheduling 89

swap in partially executed . swap out 5
swapped-out processes

ready queue { CPU } end

m VO waiting
@ “queues. <.

Figure 3.8 Addition of medium-term scheduling to the queueing diagram.

processes. If all processes are 1/0 bound, the ready queue will almost always
be empty, and the short-term scheduler will have little to do. If all processes
are CPU bound, the 1/0 waiting queue will almost always be empty, devices
will go unused, and again the system will be unbalanced. The system with the
best performance will thus have a combination of CPU-bound and 1/0-bound
processes.

On some systems, the long-term scheduler may be absent or minimal.
For example, time-sharing systems such as UNIX and Microsoft Windows
systems often have no long-term scheduler but simply put every new process
in memory for the short-term scheduler. The stability of these systems depends
either on a physical limitation (such as the number of available terminals) or
on the self-adjusting nature of human users. If the performance declines to
unacceptable levels on a multiuser system, some users will simply quit.

Some operating systems, such as time-sharing systems, may introduce an
additional, intermediate level of scheduling. This medium-term scheduler is
diagrammed in Figure 3.8. The key idea behind a medium-term scheduler is
that sometimes it can be advantageous to remove processes from memory
(and from active contention for the CPU) and thus reduce the degree of
multiprogramming. Later, the process can be reintroduced into memory, and its
execution can be continued where it left off. This scheme is called swapping.
The process is swapped out, and is later swapped in, by the medium-term
scheduler. Swapping may be necessary to improve the process mix or because
a change in memory requirements has overcommitted available memory,
requiring memory to be freed up. Swapping is discussed in Chapter 8.

3.2.3 Context Switch

As mentioned in 1.2.1, interrupts cause the operating system to change a CPU
from its current task and to run a kernel routine. Such operations happen
frequently on general-purpose systems. When an interrupt occurs, the system
needs to save the current context of the process currently running on the
CPU so that it can restore that context when its processing is done, essentially
suspending the process and then resuming it. The context is represented in
the PCB of the process; it includes the value of the CPU registers, the process
state (see Figure 3.2), and memory-management information. Generically, we
perform a state save of the current state of the CPU, be it in kernel or user mode,
and then a state restore to resume operations.
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Switching the CPU to another process requires performing a state save
of the current process and a state restore of a different process. This task is
known as a context switch. When a context switch occurs, the kernel saves the
context of the old process in its PCB and loads the saved context of the new
process scheduled to run. Context-switch time is pure overhead, because the
system does no useful work while switching. Its speed varies from machine to
machine, depending on the memory speed, the number of registers that must
be copied, and the existence of special instructions (such as a single instruction
to load or store all registers). Typical speeds are a few milliseconds.

Context-switch times are highly dependent on hardware support. For
instance, some processors (such as the Sun UltraSPARC) provide multiple sets
of registers. A context switch here simply requires changing the pointer to the
current register set. Of course, if there are more active processes than there are
register sets, the system resorts to copying register data to and from memory,
as before. Also, the more complex the operating system, the more work must
be done during a context switch. As we will see in Chapter 8, advanced
memory-management techniques may require extra data to be switched with
each context. For instance, the address space of the current process must be
preserved as the space of the next task is prepared for use. How the address
space is preserved, and what amount of work is needed to preserve it, depend
on the memory-management method of the operating system.

Operations on Processes

The processes in most systems can execute concurrently, and they may
be created and deleted dynamically. Thus, these systems must provide a
mechanism for process creation and termination. In this section, we explore
the mechanisms involved in creating processes and illustrate process creation
on UNIX and Windows systems.

3.3.1 Process Creation

A process may create several new processes, via a create-process system call,
during the course of execution. The creating process is called a parent process,
and the new processes are called the children of that process. Each of these
new processes may in turn create other processes, forming a tree of processes.
Most operating systems (including UNIX and the Windows family of
operating systems) identify processes according to a unique process identifier
(or pid), which is typically an integer number. Figure 3.9 illustrates a typical
process tree for the Solaris operating system, showing the name of each process
and its pid. In Solaris, the process at the top of the tree is the sched process,
with pid of 0. The sched process creates several children processes—including
pageout and fsflush. These processes are responsible for managing memory
and file systems. The sched process also creates the init process, which serves
as the root parent process for all user processes. In Figure 3.9, we see two
children of init—inetd and dtlogin. inetd is responsible for networking
services such as telnet and ftp; dtlogin is the process representing a user
login screen. When a user logs in, dtlogin creates an X-windows session
(Xsession), which in turns creates the sdt_shel process. Below sdt_shel, a
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user’s command-line shell —the C-shell or csh—is created. It is this command-
line interface where the user then invokes various child processes, such as the
1s and cat commands. We also see a csh process with pid of 7778 representing
a user who has logged onto the system using telnet. This user has started the
Netscape browser (pid of 7785) and the emacs editor (pid of 8105).

On UNIX, a listing of processes can be obtained using the ps command. For
example, entering the command ps -el will list complete information for all
processes currently active in the system. It is easy to construct a process tree
similar to what is shown in Figure 3.9 by recursively tracing parent processes
all the way to the init process.

In general, a process will need certain resources (CPU time, memory, files,
1/0 devices) to accomplish its task. When a process creates a subprocess, that
subprocess may be able to obtain its resources directly from the operating
system, or it may be constrained to a subset of the resources of the parent
process. The parent may have to partition its resources among its children,
or it may be able to share some resources (such as memory or files) among
several of its children. Restricting a child process to a subset of the parent’s
resources prevents any process from overloading the system by creating too
many subprocesses.

In addition to the various physical and logical resources that a process
obtains when it is created, initialization data (input) may be passed along by
the parent process to the child process. For example, consider a process whose
function is to display the contents of a file—say, img.jpg—on the screen of a

~ fsflush.
“pid=3

“telnetdaemon “Xsession |
pid =294

pid = 7776

Csh
pid = 1400

Figure 3.9 A tree of processes on a typical Solaris system.
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terminal. When it is created, it will get, as an input from its parent precess,
the name of the file img.jpg, and it will use that file name, open the file, and
write the contents out. It may also get the name of the output device. Some
operating systems pass resources to child processes. On such a system, the
new process may get two open files, img.jpg and the terminal device, and may
simply transfer the datum between the two.

When a process creates a new process, two possibilities exist in terms of
execution:

1. The parent continues to execute concurrently with its children.

2. The parent waits until some or all of its children have terminated.
There are also two possibilities in terms of the address space of the new process:
1. The child process is a duplicate of the parent process (it has the same
program and data as the parent).
2. The child process has a new program loaded into it.

To illustrate these differences, let’s first consider the UNIX operating system.
In UNIX, as we've seen, each process is identified by its process identifier,

#include <sys/types.h>
#include <stdio.h>
#include <unistd.h>

int main ()

{

pid.t pid;

/* fork a child process */
pid = fork();

if (pid < 0) {/* error occurred */
fprintf (stderr, "Fork Failed");

exit(-1);

}

else if (pid == 0) {/* child process */
execlp ("/bin/ls","1ls",NULL) ;

}

else {/* parent process */
/* parent will wait for the child to complete */
wait (NULL) ;
printf ("Child Complete");
exit (0) ;

Figure 3.10 C program forking a separate process.
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which is a unique integer. A new process is created by the fork() system
call. The new process consists of a copy of the address space of the original
process. This mechanism allows the parent process to communicate easily with
its child process. Both processes (the parent and the child) continue execution
at the instruction after the fork(), with one difference: The return code for
the fork () is zero for the new (child) process, whereas the (nonzero) process
identifier of the child is returned to the parent.

Typically, the exec() system call is used after a fork() system call by
one of the two processes to replace the process’s memory space with a new
program. The exec () system call loads a binary file into memory (destroying
the memory image of the program containing the exec() system call) and
starts its execution. In this manner, the two processes are able to communicate
and then go their separate ways. The parent can then create more children; or,
if it has nothing else to do while the child runs, it can issue a wait () system
call to move itself off the ready queue until the termination of the child.

The C program shown in Figure 3.10 illustrates the UNIX system calls
previously described. We now have two different processes running a copy
of the same program. The value of pid for the child process is zero; that for
the parent is an integer value greater than zero. The child process overlays
its address space with the UNIX command /bin/1s (used to get a directory
listing) using the execlp() system call (execlp() is a version of the exec()
system call). The parent waits for the child process to complete with the wait (O
system call. When the child process completes (by either implicitly or explicitly
invoking exit ()) the parent process resumes from the call to wait (), where it
completes using the exit () system call. This is also illustrated in Figure 3.11.

As an alternative example, we next consider process creation in Windows.
Processes are created in the Win32 API using the CreateProcess () function,
which s similar to fork () in that a parent creates a new child process. However,
whereas fork () has the child process inheriting the address space of its parent,
CreateProcess () requires loading a specified program into the address space
of the child process at process creation. Furthermore, whereas fork () is passed
no parameters, CreateProcess () expects no fewer than ten parameters.

The C program shown in Figure 3.12 illustrates the CreateProcess()
function, which creates a child process that loads the applicationmspaint . exe.
We opt for many of the default values of the ten parameters passed to
CreateProcess(). Readers interested in pursuing the details on process
creation and management in the Win32 API are encouraged to consult the
bibliographical notes at the end of this chapter.

resumes

Figure 3.11 Process creation.
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#include <stdio.h> 2
#include <windows.h>

int main(Vv0OID)

{

STARTUPINFO si;
PROCESS_INFORMATION pi;

// allocate memory
ZeroMemory (&si, sizeof (si));
si.cb = sizeof (si);
ZeroMemory (&pi, sizeof (pi));

// create child process
if (!CreateProcess (NULL, // use command line
"C:\\WINDOWS\\system32\\mspaint.exe", // command line
NULL, // don’t inherit process handle

NULL, // don’t inherit thread handle

FALSE, // disable handle inheritance

0, // no creation flags

NULL, // use parent’s environment block
NULL, // use parent’s existing directory
&si,

&pi))

fprintf (stderr, "Create Process Failed");
return -1;
}
// parent will wait for the child to complete
WaitForSingleObject (pi.hProcess, INFINITE) ;
printf ("Child Complete") ;

// ¢lose handles
CloseHandle (pi.hProcess) ;
CloseHandle (pi.hThread) ;

Figure 3.12 Creating a separate process using the Win32 API.

Two parameters passed to CreateProcess () are instances of the START-
UPINFO and PROCESS INFORMATION structures. STARTUPINFO specifies many
properties of the new process, such as window size and appearance and han-
dles to standard input and output files. The PROCESS INFORMATION structure
contains a handle and the identifiers to the newly created process and its thread.
We invoke the ZeroMemory () function to allocate memory for each of these
structures before proceeding with CreateProcess ().

The first two parameters passed to CreateProcess() are the application
name and command line parameters. If the application name is NULL (which
in this case it is), the command line parameter specifies the application to
load. In this instance we are loading the Microsoft Windows mspaint.cxe

e
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application. Beyond these two initial parameters, we use the default parameters
for inheriting process and thread handles as well as specifying no creation flags.
We also use the parent’s existing environment block and starting directory.
Last, we provide two pointers to the STARTUPINFO and PROCESS_INFORMATION
structures created at the beginning of the program. In Figure 3.10, the parent
process waits for the child to complete by invoking the wait () system call.
The equivalent of this in Win32 is WaitForSingleObject (), whichis passed a
handle of the child process—pi.hProcess— thatit is waiting for to complete.
Once the child process exits, control returns from the WaitForSingleObject O
function in the parent process.

3.3.2 Process Termination

A process terminates when it finishes executing its final statement and asks the
operating system to delete it by using the exit () system call. At that point, the
process may return a status value (typically an integer) to its parent process (via
the wait() system call). All the resources of the process—including physical and
virtual memory, open files, and I/0 buffers—are deallocated by the operating
system.

Termination can occur in other circumstances as well. A process can cause
the termination of another process via an appropriate system call (for example,
TerminateProcess() in Win32). Usually, such a system call can be invoked
only by the parent of the process that is to be terminated. Otherwise, users
could arbitrarily kill each other’s jobs. Note that a parent needs to know the
identities of its children. Thus, when one process creates a new process, the
identity of the newly created process is passed to the parent.

A parent may terminate the execution of one of its children for a variety of
reasons, such as these:

e The child has exceeded its usage of some of the resources that it has been
allocated. (To determine whether this has occurred, the parent must have
a mechanism to inspect the state of its children.)

® The task assigned to the child is no longer required.

® The parent is exiting, and the operating system does not allow a child to
continue if its parent terminates.

Some systems, including VMS, do not allow a child to exist if its parent
has terminated. In such systems, if a process terminates (either normally or
abnormally), then all its children must also be terminated. This phenomenon,
referred to as cascading termination, is normally initiated by the operating
system.

To illustrate process execution and termination, consider that, in UNIX, we
can terminate a process by using the exit () system call; its parent process
may wait for the termination of a child process by using the wait () system
call. The wait () system call returns the process identifier of a terminated child
so that the parent can tell which of its possibly many children has terminated.
If the parent terminates, however, all its children have assigned as their new
parent the init process. Thus, the children still have a parent to collect their
status and execution statistics.
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Interprocess Communication ’

Processes executing concurrently in the operating system may be either
independent processes or cooperating processes. A process is independent
if it cannot affect or be affected by the other processes executing in the system.
Any process that does not share data with any other process is independent. A
process is cooperating if it can affect or be affected by the other processes
executing in the system. Clearly, any process that shares data with other
processes is a cooperating process.

There are several reasons for providing an environment that allows process
cooperation:

e Information sharing. Since several users may be interested in the same
piece of information (for instance, a shared file), we must provide an
environment to allow concurrent access to such information.

¢ Computation speedup. If we want a particular task to run faster, we must
break it into subtasks, each of which will be executing in parallel with the
others. Notice that such a speedup can be achieved only if the computer
has multiple processing elements (such as CPUs or 1/0 channels).

® Modularity. We may want to construct the system in a modular fashion,
dividing the system functions into separate processes or threads, as we
discussed in Chapter 2.

e Convenience. Even an individual user may work on many tasks at the
same time. For instance, a user may be editing, printing, and compiling in
parallel.

Cooperating processes require an interprocess communication (IPC) mech-
anism that will allow them to exchange data and information. There are two
fundamental models of interprocess communication: (1) shared memory and
(2) message passing. In the shared-memory model, a region of memory that
is shared by cooperating processes is established. Processes can then exchange
information by reading and writing data to the shared region. In the message-
passing model, communication takes place by means of messages exchanged
between the cooperating processes. The two communications models are
contrasted in Figure 3.13.

Both of the models just discussed are common in operating systems, and
many systems implement both. Message passing is useful for exchanging
smaller amounts of data, because no conflicts need be avoided. Message
passing is also easier to implement than is shared memory for intercomputer
communication. Shared memory allows maximum speed and convenience of
communication, as it can be done at memory speeds when within a computer.

Shared memory is faster than message passing, as message-passing systems . .

are typically implemented using system calls and thus require the more time-
consuming task of kernel intervention. In contrast, in shared-memory systems,
system calls are required only to establish shared-memory regions. Once shared
memory is established, all accesses are treated as routine memory accesses, and
no assistance from the kernel is required. In the remainder of this section, we
explore each of these IPC models in more detail.
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Figure 3.13 Communications models. (a) Message passing. (b) Shared memory.

3.4.1 Shared-Memory Systems

Interprocess communication using shared memory requires communicating
processes to establish a region of shared memory. Typically, a shared-memory
region resides in the address space of the process creating the shared-memory
segment. Other processes that wish to communicate using this shared-memory
segment must attach it to their address space. Recall that, normally, the
operating system tries to prevent one process from accessing another process’s
memory. Shared memory requires that two or more processes agree to remove
this restriction. They can then exchange information by reading and writing
data in the shared areas. The form of the data and the location are determined by
these processes and are not under the operating system’s control. The processes
are also responsible for ensuring that they are not writing to the same location
simultaneously.

To illustrate the concept of cooperating processes, let’s consider the
producer—consumer problem, which is a common paradigm for cooperating
processes. A producer process produces information that is consumed by a
consumer process. For example, a compiler may produce assembly code,
which is consumed by an assembler. The assembler, in turn, may produce
object modules, which are consumed by the loader. The producer—consumer
problem also provides a useful mehphor for the client—server paradigm. We
generally think of a server as a producer and a client as a consumer. For
example, a web server produces (that is, provides) HTML files and images,
which are consumed (that is, read) by the client web browser requesting the
resource.

One solution to the producer—consumer problem uses shared memory. To
allow producer and consumer processes to run concurrently, we must have
available a buffer of items that can be filled by the producer and emptied by
the consumer. This buffer will reside in a region of memory that is shared by
the producer and consumer processes. A producer can produce one item while
the consumer is consuming another item. The producer and consumer must
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be synchronized, so that the consumer does not try to consume an item that
has not yet been produced.

Two types of buffers can be used. The unbounded buffer places no practical
limit on the size of the buffer. The consumer may have to wait for new items,
but the producer can always produce new items. The bounded buffer assumes
a fixed buffer size. In this case, the consumer must wait if the buffer is empty,
and the producer must wait if the buffer is full.

Let’s look more closely at how the bounded buffer can be used to enable
processes to share memory. The following variables reside in a region of
memory shared by the producer and consumer processes:

#define BUFFER_SIZE 10
typedef struct
}item;

item buffer [BUFFER_SIZE] ;
int in = 0;
int out = 0;

The shared buffer is implemented as a circular array with two logical
pointers: in and out. The variable in points to the next free position in the
buffer; out points to the first full position in the buffer. The buffer is empty
when in == out; the buffer is full when ((in + 1) % BUFFER SIZE) == out.

The code for the producer and consumer processes is shown in Figures 3.14
and 3.15, respectively. The producer process has a local variable nextProduced
in which the new item to be produced is stored. The consumer process has a
local variable nextConsumed in which the item to be consumed is stored.

This scheme allows at most BUFFER.SIZE — 1 items in the buffer at the same
time. We leave it as an exercise for you to provide a solution where BUFFER_SIZE
items can be in the buffer at the same time. In Section 3.5.1, we illustrate the
POSIX API for shared memory.

One issue this illustration does not address concerns the situation in which
both the producer process and the consumer process attempt to access the
shared buffer concurrently. In Chapter 6, we discuss how synchronization
among cooperating processes can be implemented effectively in a shared-
memory environment.

item nextProduced;

while (true) {
/* produce an item in nextProduced */
while (((in + 1) % BUFFER.SIZE) == out)
; /* do nothing */
bufferf{in] = nextProduced;
in = (in + 1) % BUFFER.SIZE;

Figure 3.14 The producer process.
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item nextConsumed; 5

while (true) {
while {(in == out)
; // do nothing

nextConsumed = buffer[out];
out = (out + 1) % BUFFER.SIZE;
/* consume the item in nextConsumed */

Figure 3.15 The consumer process.

3.4.2 Message-Passing Systems

In Section 3.4.1, we showed how cooperating processes can communicate in a
shared-memory environment. The scheme requires that these processes share a
region of memory and that the code for accessing and manipulating the shared
memory be written explicitly by the application programmer. Another way to
achieve the same effect is for the operating system to provide the means for
cooperating processes to communicate with each other via a message-passing
facility.

Message passing provides a mechanism to allow processes to communicate
and to synchronize their actions without sharing the same address space and
is particularly useful in a distributed environment, where the communicating
processes may reside on different computers connected by a network. For
example, a chat program used on the World Wide Web could be designed so
that chat participants communicate with one another by exchanging messages.

A message-passing facility provides at least two operations: send(message)
and receive(message). Messages sent by a process can be of either fixed
or variable size. If only fixed-sized messages can be sent, the system-level
implementation is straightforward. This restriction, however, makes the task
of programming more difficult. Conversely, variable-sized messages require
a more complex system-level implementation, but the programming task
becomes simpler. This is a common kind of tradeoff seen throughout operating
system design.

If processes P and Q want to communicate, they must send messages to and
receive messages from each other; a communication link must exist between
them. This link can be implemented in a variety of ways. We are concerned here
not with the link’s physical implementation (such as shared memory, hardware
bus, or network, which are covered in Chapter 16) but rather with its logical
implementation. Here are several methods for logically implementing a link
and the send () /receive () operations:

¢ Direct or indirect communication
® Synchronous or asynchronous communication

® Automatic or explicit buffering

We look at issues related to each of these features next.
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3.4.21 Naming '

Processes that want to communicate must have a way to refer to each other.
They can use either direct or indirect communication.

Under direct communication, each process that wants to communicate
must explicitly name the recipient or sender of the communication. In this
scheme, the send () and receive() primitives are defined as:

e send(P, message) —Send a message to process P.

e receive(Q, message) —Receive a message from process Q.
A communication link in this scheme has the following properties:

e A link is established automatically between every pair of processes that
want to communicate. The processes need to know only each other’s
identity to communicate.

¢ A link is associated with exactly two processes.

e Between each pair of processes, there exists exactly one link.

This scheme exhibits symmetry in addressing; that is, both the sender
process and the receiver process must name the other to communicate. A
variant of this scheme employs asymmetry in addressing. Here, only the sender
names the recipient; the recipient is not required to name the sender. In this
scheme, the send () and receive () primitives are defined as follows:

® send(P, message)—>Send amessage to process P.

® receive(id, message) —Receive a message from any process; the vari-
able id is set to the name of the process with which communication has
taken place.

The disadvantage in both of these schemes (symmetric and asymmetric)
is the limited modularity of the resulting process definitions. Changing the
identifier of a process may necessitate examining all other process definitions.
All references to the old identifier must be found, so that they can be modified
to the new identifier. In general, any such hard-coding techniques, where
identifiers must be explicitly stated, are less desirable than techniques involving
indirection, as described next.

With indirect communication, the messages are sent to and received from
mailboxes, or ports. A mailbox can be viewed abstractly as an object into which
messages can be placed by processes and from which messages can be removed.
Each mailbox has a unique identification. For example, POSIX message queues
use an integer value to identify a mailbox. In this scheme, a process can
communicate with some other process via a number of different mailboxes.

Two processes can communicate only if the processes have a shared mailbox, -

however. The send () and receive () primitives are defined as follows:

e send(A, message)—Send a message to mailbox A.

e receive(A, message)—Receive a message from mailbox A.

In this scheme, a communication link has the following properties:
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* A link is established between a pair of processes only if both members of
the pair have a shared mailbox.

® A link may be associated with more than two processes.

¢ Between each pair of communicating processes, there may be a number of
different links, with each link corresponding to one mailbox.

Now suppose that processes Py, P>, and P; all share mailbox A. Process
Py sends a message to A, while both P; and P; execute a receive() from A
Which process will receive the message sent by P;? The answer depends on
which of the following methods we choose:

¢ Allow a link to be associated with two processes at most.
® Allow at most one process at a time to execute a receive () operation.

¢ Allow the system to select arbitrarily which process will receive the
message (that is, either P, or P3, but not both, will receive the message).
The system also may define an algorithm for selecting which process
will receive the message (that is, round robin where processes take turns
receiving messages). The system may identify the receiver to the sender.

A mailbox may be owned either by a process or by the operating system.
If the mailbox is owned by a process (that is, the mailbox is part of the address
space of the process), then we distinguish between the owner (who can only
receive messages through this mailbox) and the user (who can only send
messages to the mailbox). Since each mailbox has a unique owner, there can be
no confusion about who should receive a message sent to this mailbox. When a
process that owns a mailbox terminates, the mailbox disappears. Any process
that subsequently sends a message to this mailbox must be notified that the
mailbox no longer exists.

In contrast, a mailbox that is owned by the operating system has an
existence of its own. It is independent and is not attached to any particular
process. The operating system then must provide a mechanism that allows a
process to do the following:

® (Create a new mailbox.

e Send and receive messages through the mailbox.

@ Delete a mailbox.

The process that creates a new mailbox is that mailbox’s owner by default.
Initially, the owner is the only process that can receive messages through this
mailbox. However, the ownership and receiving privilege may be passed to
other processes through appropriate system calls. Of course, this provision
could result in multiple receivers for each mailbox.

3.4.2.2 Synchronization

Communication between processes takes place through calls to send () and
receive() primitives. There are different design options for implementing
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each primitive. Message passing may be either blocking or nonblocKing—
also known as synchronous and asynchronous.

e Blocking send. The sending process is blocked until the message is
received by the receiving process or by the mailbox.

* Nonblocking send. The sending process sends the message and resumes
operation.

* Blocking receive. The receiver blocks until a message is available.

e Nonblocking receive. The receiver retrieves either a valid message or a
null.

Different combinations of send () and receive () are possible. When both
send() and receive() are blocking, we have a rendezvous between the
sender and the receiver. The solution to the producer—consumer problem
becomes trivial when we use blocking send() and receive() statements.
The producer merely invokes the blocking send() call and waits until the
message is delivered to either the receiver or the mailbox. Likewise, when the
consumer invokes receive (), it blocks until a message is available.

Note that the concepts of synchronous and asynchronous occur frequently
in operating-system 1/0 algorithms, as you will see throughout this text.

3.4.2.3 Buffering

Whether communication is direct or indirect, messages exchanged by commu-
nicating processes reside in a temporary queue. Basically, such queues can be
implemented in three ways:

e Zero capacity. The queue has a maximum length of zero; thus, the link
cannot have any messages waiting in it. In this case, the sender must block
until the recipient receives the message.

¢ Bounded capacity. The queue has finite length ; thus, at most n messages
can reside in it. If the queue is not full when a new message is sent, the
message is placed in the queue (either the message is copied or a pointer
to the message is kept), and the sender can continue execution without
waiting. The links capacity is finite , however. If the link is full, the sender
must block until space is available in the queue.

¢ Unbounded capacity. The queues length is potentially infinite; thus, any
number of messages can wait in it. The sender never blocks.

The zero-capacity case is sometimes referred to as a message system with no
buffering; the other cases are referred to as systems with automatic buffering.

Examples of IPC Systems

In this section, we explore three different IPC systems. We first cover the
POSIX API for shared memory and then discuss message passing in the Mach
operating system. We conclude with Windows XP, which interestingly uses
shared memory as a mechanism for providing certain types of message passing.
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3.5.1 An Example: POSIX Shared Memory :

Several IPC mechanisms are available for POSIX systems, including shared
memory and message passing. Here, we explore the POSIX API for shared
memory.

A process must first create a shared memory segment using the shmget ()
system call (shmget () is derived from SHared Memory GET). The following
example illustrates the use of shmget ():

segment_id = shmget (IPC_PRIVATE, size, SIRUSR | SIWUSR);

This first parameter specifies the key (or identifier) of the shared-memory
segment. If this is set to IPC_PRIVATE, a new shared-memory segment is created.
The second parameter specifies the size (in bytes) of the shared memory
segment. Finally, the third parameter identifies the mode, which indicates
how the shared-memory segment is to be used —that is, for reading, writing,
or both. By setting the mode to S_JIRUSR | SJIWUSR, we are indicating that the
owner may read or write to the shared memory segment. A successful call to
shmget () returns an integer identifier for the shared-memory segment. Other
processes that want to use this region of shared memory must specify this
identifier.

Processes that wish to access a shared-memory segment must attach it to
their address space using the shmat () (SHared Memory ATtach)system call.
The call to shmat () expects three parameters as well. The first is the integer
identifier of the shared-memory segment being attached, and the second is
a pointer location in memory indicating where the shared memory will be
attached. If we pass a value of NULL, the operating system selects the location
on the user’s behalf. The third parameter identifies a flag that allows the shared-
memory region to be attached in read-only or read-write mode; by passing a
parameter of 0, we allow both reads and writes to the shared region.

The third parameter identifies a mode flag. If set, the mode flag allows the
shared-memory region to be attached in read-only mode; if set to 0, the flag
allows both reads and writes to the shared region. We attach a region of shared
memory using shmat () as follows:

shared memory = (char *) shmat(id, NULL, 0);

If successful, shmat () returns a pointer to the beginning location in memory
where the shared-memory region has been attached.

Once the region of shared memory is attached to a process’s address space,
the process can access the shared memory as a routine memory access using
the pointer returned from shmat (). In this example, shmat () returns a pointer
to a character string. Thus, we could write to the shared-memory region as
follows:

sprintf (shared memory, "Writing to shared memory");

Other processes sharing this segment would see the updates to the shared-
memory segment.

Typically, a process using an existing shared-memory segment first attaches
the shared-memory region to its address space and then accesses (and possibly
updates) the region of shared memory. When a process no longer requires
access to the shared-memory segment, it detaches the segment from its address
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#include <stdio.h> #
#include <sys/shm.h>
#include <sys/stat.h>

int main()

{

/* the identifier for the shared memory segment */

int segment_id;=

/* a pointer to the shared memory segment */

char* ghared.memory;

/* the size (in bytes) of the shared memory segment */
const int size = 4096;

/* allocate a shared memory segment */
segment id = shmget (IPC.PRIVATE, size, S_IRUSR | S_IWUSR) ;

/* attach the shared memory segment */
shared_memory = {(char *) shmat (segment.id, NULL, 0);

/* write a message to the shared memory segment */
sprintf (shared.memory, "Hi there!");

/* now print out the string from shared memory */
printf ("*%s\n", shared memory);

/* now detach the shared memory segment */
shmdt (shared.memory) ;

/* now remove the shared memory segment */
shmetl (segment_id, IPC.RMID, NULL) ;

return O;

Figure 3.16 C program illustrating POSIX shared-memory API.

space. To detach a region of shared memory, the process can pass the pointer
of the shared-memory region to the shmdt () system call, as follows:

shmdt (shared_memory) ;

Finally, a shared-memory segment can be removed from the system with the
shmct1() system call, which is passed the identifier of the shared segment
along with the flag [IPC_RMID.

The program shown in Figure 3.16 illustrates the POSIX shared-memory AP -
discussed above. This program creates a 4,096-byte shared-memory segment.
Once the region of shared memory is attached, the process writes the message
Hi There! to shared memory. After outputting the contents of the updated
memory, it detaches and removes the shared-memory region. We provide
further exercises using the POSIX shared memory API in the programming
exercises at the end of this chapter.

=~
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3.5.2 An Example: Mach 4

As an example of a message-based operating system, we next consider
the Mach operating system, developed at Carnegie Mellon University. We
introduced Mach in Chapter 2 as part of the Mac OS X operating system. The
Mach kernel supports the creation and destruction of multiple tasks, which are
similar to processes but have multiple threads of control. Most communication
in Mach—including most of the system calls and all intertask information—
is carried out by messages. Messages are sent to and received from mailboxes,
called ports in Mach.

Even system calls are made by messages. When a task is created, two special
mailboxes—the Kernel mailbox and the Notify mailbox—are also created. The
Kernel mailbox is used by the kernel to communicate with the task. The kernel
sends notification of event occurrences to the Notify port. Only three system
calls are needed for message transfer. The msg_send () call sends a message
to a mailbox. A message is received via msg_receive (). Remote procedure
calls (RPCs) are executed via msg_rpc (), which sends a message and waits for
exactly one return message from the sender. In this way, the RPC models a
typical subroutine procedure call but can work between systems—hence the
term remote.

The port_allocate() system call creates a new mailbox and allocates
space for its queue of messages. The maximum size of the message queue
defaults to eight messages. The task that creates the mailbox is that mailbox’s
owner. The owner is also allowed to receive from the mailbox. Only one task
at a time can either own or receive from a mailbox, but these rights can be sent
to other tasks if desired.

The mailbox has an initially empty queue of messages. As messages are
sent to the mailbox, the messages are copied into the mailbox. All messages
have the same priority. Mach guarantees that multiple messages from the same
sender are queued in first-in, first-out (FIFO) order but does not guarantee an
absolute ordering. For instance, messages from two senders may be queued in
any order.

The messages themselves consist of a fixed-length header followed by a
variable-length data portion. The header indicates the length of the message
and includes two mailbox names. One mailbox name is the mailbox to which
the message is being sent. Commonly, the sending thread expects a reply; so
the mailbox name of the sender is passed on to the receiving task, which can
use it as a “return address.”

The variable part of a message is a list of typed data items. Each entry
in the list has a type, size, and value. The type of the objects specified in the
message is important, since objects defined by the operating system—such as
ownership or receive access rights, task states, and memory segments—may
be sent in messages.

The send and receive operations themselves are flexible. For instance, when
a message is sent to a mailbox, the mailbox may be full. If the mailbox is not
full, the message is copied to the mailbox, and the sending thread continues. If
the mailbox is full, the sending thread has four options:

1. Wait indefinitely until there is room in the mailbox.

2. Wait at most n milliseconds.
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3. Do not wait at all but rather return immediately. »

4. Temporarily cache a message. One message can be given to the operating
system to keep, even though the mailbox to which it is being sent is full.
When the message can be put in the mailbox, a message is sent back to
the sender; only one such message to a full mailbox can be pending at
any time for a given sending thread.

The final option is meant for server tasks, such as a line-printer driver. After
finishing a request, such tasks may need to send a one-time reply to the task
that had requested service; but they must also continue with other service
requests, even if the reply mailbox for a client is full.

The receive operation must specify the mailbox or mailbox set from which a
message is to be received. A mailbox set is a collection of mailboxes, as declared
by the task, which can be grouped together and treated as one mailbox for the
purposes of the task. Threads in a task can receive only from a mailbox or
mailbox set for which the task has receive access. A port_status() system
call returns the number of messages in a given mailbox. The receive operation
attempts to receive from (1) any mailbox in a mailbox set or (2) a specific
(named) mailbox. If no message is waiting to be received, the receiving thread
can either wait at most n milliseconds or not wait at all.

The Mach system was especially designed for distributed systems, which
we discuss in Chapters 16 through 18, but Mach is also suitable for single-
processor systems, as evidenced by its inclusion in the Mac OS X system. The
major problem with message systems has generally been poor performance
caused by double copying of messages; the message is copied first from
the sender to the mailbox and then from the mailbox to the receiver. The
Mach message system attempts to avoid double-copy operations by using
virtual-memory-management techniques (Chapter 9). Essentially, Mach maps
the address space containing the sender’s message into the receiver’s address
space. The message itself is never actually copied. This message-management
technique provides a large performance boost but works for only intrasystem
messages. The Mach operating system is discussed in an extra chapter posted
on our website.

3.5.3 An Example: Windows XP

The Windows XP operating system is an example of modern design that
employs modularity to increase functionality and decrease the time needed
to implement new features. Windows XP provides support for multiple
operating environments, or subsystems, with which application programs
communicate via a message-passing mechanism. The application programs
can be considered clients of the Windows XP subsystem server.

The message-passing facility in Windows XP is called the local procedure-
call (LPC) facility. The LPC in Windows XP communicates between two .
processes on the same machine. Itis similar to the standard RPC mechanism that
is widely used, but it is optimized for and specific to Windows XP. Like Mach,
Windows XP uses a port object to establish and maintain a connection between
two processes. Every client that calls a subsystem needs a communication
channel, which is provided by a port object and is never inherited. Windows
XP uses two types of ports: connection ports and communication ports. They
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are really the same but are given different names according to how they are
used. Connection ports are named objects and are visible to all processes; they
give applications a way to set up communication channels (Chapter 22). The
communication works as follows:

¢ The client opens a handle to the subsystem’s connection port object.
® The client sends a connection request.

® Theserver creates two private communication ports and returns the handle
to one of them to the client.

e The client and server use the corresponding port handle to send messages
or callbacks and to listen for replies.

Windows XP uses two types of message-passing techniques over a port that
the client specifies when it establishes the channel. The simplest, which is used
for small messages, uses the port’s message queue as intermediate storage and
copies the message from one process to the other. Under this method, messages
of up to 256 bytes can be sent.

If a client needs to send a larger message, it passes the message through
a section object, which sets up a region of shared memory. The client has to
decide when it sets up the channel whether or not it will need to send a large
message. If the client determines that it does want to send large messages, it
asks for a section object to be created. Similarly, if the server decides that replies
will be large, it creates a section object. So that the section object can be used,
a small message is sent that contains a pointer and size information about the
section object. This method is more complicated than the first method, but it
avoids data copying. In both cases, a callback mechanism can be used when
either the client or the server cannot respond immediately to a request. The
callback mechanism allows them to perform asynchronous message handling.
The structure of local procedure calls in Windows XP is shown in Figure 3.17.

It is important to note that the LPC facility in Windows XP is not part of
the Win32 API and hence is not visible to the application programmer. Rather,
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Figure 3.17 Local procedure calls in Windows XP.
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applications using the Win32 API invoke standard remote procedure;calls.
When the RPC is being invoked on a process on the same system, the RPC is
indirectly handled through a local procedure call. LPCs are also used in a few
other functions that are part of the Win32 APL

Communication in Client-Server Systems

In Section 3.4, we described how processes can communicate using shared
memory and message passing. These techniques can be used for communica-
tion in client-server systems (1.12.2) as well. In this section, we explore three
other strategies for communication in client—server systems: sockets, remote
procedure calls (RPCs), and Java’s remote method invocation (RMI).

3.6.1 Sockets

A socket is defined as an endpoint for communication. A pair of processes
communicating over a network employ a pair of sockets—one for each process.
A socket is identified by an IP address concatenated with a port number. In
general, sockets use a client—server architecture. The server waits for incoming
client requests by listening to a specified port. Once a request is received, the
server accepts a connection from the client socket to complete the connection.
Servers implementing specific services (such as telnet, ftp, and http) listen to
well-known ports (a telnet server listens to port 23, an ftp server listens to
port 21, and a web, or http, server listens to port 80). All ports below 1024 are
considered well known; we can use them to implement standard services.
When a client process initiates a request for a connection, it is assigned a
port by the host computer. This port is some arbitrary number greater than
1024. For example, if a client on host X with IP address 146.86.5.20 wishes to
establish a connection with a web server (which is listening on port 80) at
address 161.25.19.8, host X may be assigned port 1625. The connection will
consist of a pair of sockets: (146.86.5.20:1625) on host X and (161.25.19.8:80)
on the web server. This situation is illustrated in Figure 3.18. The packets

host X
(146.86.5.20)

socket

(146.86.5.20:1625)
web server

(161.25.19.8)

socket
(161.25.19.8:80)

Figure 3.18 Communication using sockets.
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traveling between the hosts are delivered to the appropriate process based on
the destination port number.

All connections must be unique. Therefore, if another process also on host
X wished to establish another connection with the same web server, it would be
assigned a port number greater than 1024 and not equal to 1625. This ensures
that all connections consist of a unique pair of sockets.

Although most program examples in this text use C, we will illustrate
sockets using Java, as it provides a much easier interface to sockets and has a
rich library for networking utilities. Those interested in socket programming
in C or C++ should consult the bibliographical notes at the end of the chapter.

Java provides three different types of sockets. Connection-oriented (TCP)
sockets are implemented with the Socket class. Connectionless (UDP) sockets
use theDatagramSocket class. Finally, theMulticastSocket classis asubclass
of the DatagramSocket class. A multicast socket allows data to be sent to
multiple recipients.

Our example describes a date server that uses connection-oriented TCP
sockets. The operation allows clients to request the current date and time from

import java.net.*;
import java.io.*;

public class DateServer
{
public static void main(Stringl[] args) ({

try {
ServerSocket sock = new ServerSocket (6013);

// now listen for connections
while (true) {
Socket client = sock.accept();

PrintWriter pout = new
PrintWriter (client.getOutputStream(), true);

// write the Date to the socket
pout.println{new java.util.Date() .toString());

// close the socket and resume
// listening for connections
client.closge();
}
}
catch (IOException ioce) {
System.err.println(ioe) ;
}

}
}

Figure 3.19 Date server.
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the server. The server listens to port 6013, although the port could have any
arbitrary number greater than 1024. When a connection is received, the server
returns the date and time to the client.

The date server is shown in Figure 3.19. The server creates a ServerSocket
that specifies it will listen to port 6013. The server then begins listening to the
port with the accept () method. The server blocks on the accept () method
waiting for a client to request a connection. When a connection request is
received, accept () returns a socket that the server can use to communicate
with the client.

The details of how the server communicates with the socket are as follows.
The server first establishes a PrintWriter object that it will use to communicate
with the client. A PrintWriter object allows the server to write to the socket
using the routine print () and println() methods for output. The server
process sends the date to the client, calling the method println(). Once it
has written the date to the socket, the server closes the socket to the client and
resumes listening for more requests.

A client communicates with the server by creating a socket and connecting
to the port on which the server is listening. We implement such a client in the
Java program shown in Figure 3.20. The client creates a Socket and requests

import java.net.*;
import java.io.*;

public class DateClient
{
public static void main(String[] args) {
try {
//make connection to server socket
Socket sock = new Socket("127.0.0.1",6013);

InputStream in = sock.getInputStream() ;
BufferedReader bin = new
BufferedReader (new InputStreamReader (in)) ;

// read the date from the socket

String line;

while ( (line = bin.readLine()) !'= null)
System.out.println(line) ;

// close the socket connection
sock.close () ;

}

catch (IOException ioe) {
System.err.println(ioe) ;
}

}

Figure 3.20 Date client.
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a connection with the server at IP address 127.0.0.1 on port 6013. Once the
connection is made, the client can read from the socket using normal stream
[/0 statements. After it has received the date from the server, the client closes
the socket and exits. The 1P address 127.0.0.1is a special IP address known as the
loopback. When a computer refers to IP address 127.0.0.1, it is referring to itself.
This mechanism allows a client and server on the same host to communicate
using the TCP/IP protocol. The IP address 127.0.0.1 could be replaced with the
IP address of another host running the date server. In addition to an IP address,
an actual host name, such as www.westminstercollege.edu, can be used as well.

Communication using sockets—although common and efficient—is con-
sidered a low-level form of communication between distributed processes.
One reason is that sockets allow only an unstructured stream of bytes to be
exchanged between the communicating threads. It is the responsibility of the
client or server application to impose a structure on the data. In the next two
subsections, we look at two higher-level methods of communication: remote
procedure calls (RPCs) and remote method invocation (RMI).

3.6.2 Remote Procedure Calls

One of the most common forms of remote service is the RPC paradigm, which
we discussed briefly in Section 3.5.2. The RPC was designed as a way to
abstract the procedure-call mechanism for use between systems with network
connections. It is similar in many respects to the IPC mechanism described in
Section 3.4, and it is usually built on top of such a system. Here, however,
because we are dealing with an environment in which the processes are
executing on separate systems, we must use a message-based communication
scheme to provide remote service. In contrast to the IPC facility, the messages
exchanged in RPC communication are well structured and are thus no longer
just packets of data. Each message is addressed to an RPC daemon listening to
a port on the remote system, and each contains an identifier of the function
to execute and the parameters to pass to that function. The function is then
executed as requested, and any outputis sent back to the requester in a separate
message.

A portissimply anumber included at the start of a message packet. Whereas
a system normally has one network address, it can have many ports within
that address to differentiate the many network services it supports. If a remote
process needs a service, it addresses a message to the proper port. For instance,
if a system wished to allow other systems to be able to list its current users, it
would have a daemon supporting such an RPC attached to a port—say, port
3027. Any remote system could obtain the needed information (that is, the list
of current users) by sending an RPC message to port 3027 on the server; the
data would be received in a reply message.

The semantics of RPCs allow a client to invoke a procedure on a remote
host as it would invoke a procedure locally. The RPC system hides the details
that allow communication to take place by providing a stub on the client side.
Typically, a separate stub exists for each separate remote procedure. When the
client invokes a remote procedure, the RPC system calls the appropriate stub,
passing it the parameters provided to the remote procedure. This stub locates
the port on the server and marshals the parameters. Parameter marshalling
involves packaging the parameters into a form that can be transmitted over
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a network. The stub then transmits a message to the server using meéssage
passing. A similar stub on the server side receives this message and invokes
the procedure on the server. If necessary, return values are passed back to the
client using the same technique.

One issue that must be dealt with concerns differences in data representa-
tion on the client and server machines. Consider the representation of 32-bit
integers. Some systems (known as big-endian) use the high memory address to
store the most significant byte, while other systems (known as little-endian) store
the least significant byte at the high memory address. To resolve differences
like this, many RPC systems define a machine-independent representation of
data. One such representation is known as external data representation (XDR).
On the client side, parameter marshalling involves converting the machine-
dependent data into XDR before they are sent to the server. On the server
side, the XDR data are unmarshalled and converted to the machine-dependent
representation for the server.

Another important issue involves the semantics of a call. Whereas local
procedure calls fail only under extreme circumstances, RPCs can fail, or be
duplicated and executed more than once, as a result of common network
errors. One way to address this problem is for the operating system to ensure
that messages are acted on exactly once, rather than at most once. Most local
procedure calls have the “exactly once” functionality, but it is more difficult to
implement.

First, consider “at most once”. This semantic can be assured by attaching
a timestamp to each message. The server must keep a history of all the
timestamps of messages it has already processed or a history large enough
to ensure that repeated messages are detected. Incoming messages that have
a timestamp already in the history are ignored. The client can then send
a message one or more times and be assured that it only executes once.
(Generation of these timestamps is discussed in Section 18.1.)

For “exactly once,” we need to remove the risk that the server never receives
the request. To accomplish this, the server must implement the “at most once”
protocol described above but must also acknowledge to the client that the RPC
call was received and executed. These ACK messages are common throughout
networking. The client must resend each RPC call periodically until it receives
the ACK for that call.

Another important issue concerns the communication between a server
and a client. With standard procedure calls, some form of binding takes place
during link, load, or execution time (Chapter 8) so that a procedure call’s name
is replaced by the memory address of the procedure call. The RPC scheme
requires a similar binding of the client and the server port, but how does a client
know the port numbers on the server? Neither system has full information
about the other because they do not share memory.

Two approaches are common. First, the binding information may be
predetermined, in the form of fixed port addresses. At compile time, an RPC
call has a fixed port number associated with it. Once a program is compiled,
the server cannot change the port number of the requested service. Second,
binding can be done dynamically by a rendezvous mechanism. Typically, an
operating system provides a rendezvous (also called a matchmaker) daemon
on a fixed RPC port. A client then sends a message containing the name of
the RPC to the rendezvous daemon requesting the port address of the RPC it
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Figure 3.21 Execution of a remote procedure call (RPC).

needs to execute. The port number is returned, and the RPC calls can be sent
to that port until the process terminates (or the server crashes). This method
requires the extra overhead of the initial request but is more flexible than the
first approach. Figure 3.21 shows a sample interaction.

The RPC scheme is useful in implementing a distributed file system
(Chapter 17). Such a system can be implemented as a set of RPC daemons
and clients. The messages are addressed to the distributed file system porton a
server on which a file operation is to take place. The message contains the disk
operation to be performed. The disk operation might be read, write, renane,
delete, or status, corresponding to the usual file-related system calls. The
return message contains any data resulting from that call, which is executed by
the DFS daemon on behalf of the client. For instance, a message might contain
a request to transfer a whole file to a client or be limited to a simple block
request. In the latter case, several such requests may be needed if a whole file
is to be transferred.
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3.6.3 Remote Method Invocation

Remote method invocation (RMI) is a Java feature similar to RPCs. RMI allows
a thread to invoke a method on a remote object. Objects are considered remote
if they reside in a different Java virtual machine (JvM). Therefore, the remote
object may be in a different JVM on the same computer or on a remote host
connected by a network. This situation is illustrated in Figure 3.22.

RMI and RPCs differ in two fundamental ways. First, RPCs support pro-
cedural programming, whereby only remote procedires or functions can be
called. In contrast, RMI is object-based: It supports invocation of methods on
remote objects. Second, the parameters to remote procedures are ordinary data
structures in RPC; with RMLI, it is possible to pass objects as parameters to remote
methods. By allowing a Java program to invoke methods on remote objects,
RMI makes it possible for users to develop Java applications that are distributed
across a network.

To make remote methods transparent to both the client and the server,
RMI implements the remote object using stubs and skeletons. A stub is a
proxy for the remote object; it resides with the client. When a client invokes a
remote method, the stub for the remote object is called. This client-side stub
is responsible for creating a parcel consisting of the name of the method to be
invoked on the server and the marshalled parameters for the method. The stub
then sends this parcel to the server, where the skeleton for the remote object
receives it. The skeleton is responsible for unmarshalling the parameters and
invoking the desired method on the server. The skeleton then marshals the
return value (or exception, if any) into a parcel and returns this parcel to the
client. The stub unmarshals the return value and passes it to the client.

Lets look more closely at how this process works. Assume that a client
wishes to invoke a method on a remote object server with a signature
someMethod (Object, Object) that returns a boolean value. The client
executes the statement

boolean val = server.someMethod(A, B);

The call to someMethod () with the parameters A and B invokes the stub for the
remote object. The stub marshals into a parcel the parameters A and B and the
name of the method that is to be invoked on the server, then sends this parcel to
the server. The skeleton on the server unmarshals the parameters and invokes
the method someMethod(). The actual implementation of someMethod ()
resides on the server. Once the method is completed, the skeleton marshals

JVM

JVM

Java @) remoy

© me, ,
program | %&tion

@ remote
object

Figure 3.22 Remote method invocation.
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Figure 3.23 Marshalling parameters.

the boolean value returned from someMethod () and sends this value back to
the client. The stub unmarshals this return value and passes it to the client. The
process is shown in Figure 3.23.

Fortunately, the level of abstraction that RMI provides makes the stubs and
skeletons transparent, allowing Java developers to write programs that invoke
distributed methods just as they would invoke local methods. It is crucial,
however, to understand a few rules about the behavior of parameter passing.

¢ If the marshalled parameters are local (or nonremote) objects, they are
passed by copy using a technique known as object serialization. However,
if the parameters are also remote objects, they are passed by reference. In
our example, if A is a local object and B a remote object, A is serialized and
passed by copy, and B is passed by reference. This in turn allows the server
to invoke methods on B remotely.

¢ If local objects are to be passed as parameters to remote objects, they must
implement the interface java.io.Serializable. Many objects in the core
Java API implement Serializable, allowing them to be used with RMIL.
Object serialization allows the state of an object to be written to a byte
stream.

Summary

A process is a program in execution. As a process executes, it changes state. The
state of a process is defined by that process’s current activity. Each process may
be in one of the following states: new, ready, running, waiting, or terminated.
Each process is represented in the operating system by its own process-control
block (PCB).

A process, when it is not executing, is placed in some waiting queue. There
are two major classes of queues in an operating system: I/O request queues
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and the ready queue. The ready queue contains all the processes that areteady
to execute and are waiting for the CPU. Each process is represented by a PCB,
and the PCBs can be linked together to form a ready queue. Long-term (job)
scheduling is the selection of processes that will be allowed to contend for
the CPU. Normally, long-term scheduling is heavily influenced by resource-
allocation considerations, especially memory management. Short-term (CPU)
scheduling is the selection of one process from the ready queue.

Operating systems must provide a mechanism for parent processes to
create new child processes. The parent may wait for its children to terminate
before proceeding, or the parent and children may execute concurrently. There
are several reasons for allowing concurrent execution: information sharing,
computation speedup, modularity, and convenience.

The processes executing in the operating system may be either independent
processes or cooperating processes. Cooperating processes require an interpro-
cess communication mechanism to communicate with each other. Principally,
communication is achieved through two schemes: shared memory and mes-
sage passing. The shared-memory method requires communicating processes
to share some variables. The processes are expected to exchange information
through the use of these shared variables. In a shared-memory system, the
responsibility for providing communication rests with the application pro-
grammers; the operating system needs to provide only the shared memory.
The message-passing method allows the processes to exchange messages.
The responsibility for providing communication may rest with the operating
system itself. These two schemes are not mutually exclusive and can be used
simultaneously within a single operating system.

Communication in client—server systems may use (1) sockets, (2) remote
procedure calls (RPCs), or (3) Java’s remote method invocation (RMI). A socket
is defined as an endpoint for communication. A connection between a pair of
applications consists of a pair of sockets, one at each end of the communication
channel. RPCs are another form of distributed communication. An RPC occurs
when a process (or thread) calls a procedure on a remote application. RMI is
the Java version of RPCs. RMI allows a thread to invoke a method on a remote
objectjust as it would invoke a method on a local object. The primary distinction
between RPCs and RMI is that in RPCs data are passed to a remote procedure in
the form of an ordinary data structure, whereas RMI allows objects to be passed
in remote method calls.

Exercises

3.1 Describe the differences among short-term, medium-term, and long-
term scheduling.

3.2 Describe the actions taken by a kernel to context-switch between
processes.

3.3 Consider the RPC mechanism. Describe the undesirable consequences
that could arise from not enforcing either the “at most once” or “exactly
once” semantic. Describe possible uses for a mechanism that has neither
of these guarantees.
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#include <sys/types.h>
#include <stdio.h>
#include <unistd.h>

int value = 5;

int main()

{
pid.t pid;
pid = fork();
if (pid == 0) {/* child process */
value += 15;
}
else if (pid > 0) {/* parent process */
wait (NULL) ;
printf ("PARENT: value = %d",value); /* LINE A */
exit (0) ;
}

Figure 3.24 C program.

Using the program shown in Figure 3.24, explain what will be output at
Line A.

What are the benefits and the disadvantages of each of the following?
Consider both the system level and the programmer level.
a. Synchronous and asynchronous communication

b. Automatic and explicit buffering

n

Send by copy and send by reference

d. Fixed-sized and variable-sized messages

The Fibonacci sequence is the series of numbers 0,1,1,2,3,5,8, ...
Formally, it can be expressed as:

Fiby =0
Fiby =1
fib” = fl‘b,,fl + fibnAZ

Write a C program using the fork () system call that that generates the
Fibonacci sequence in the child process. The number of the sequence
will be provided in the command line. For example, if 5 is provided, the
first five numbers in the Fibonacci sequence will be output by the child
process. Because the parent and child processes have their own copies
of the data, it will be necessary for the child to output the sequence.
Have the parent invoke the wait () call to wait for the child process to
complete before exiting the program. Perform necessary error checking
to ensure that a non-negative number is passed on the command line.
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3.7

3.8

3.9

3.10

Repeat the preceding exercise, this time using the CreateProcess () in
the Win32 APL In this instance, you will need to specify a separate
program to be invoked from CreateProcess(). It is this separate
program that will run as a child process outputting the Fibonacci
sequence. Perform necessary error checking to ensure that a non-
negative number is passed on the command line.

Modify the date server shown in Figure 3.19 so that it delivers random
fortunes rather than the current date. Allow the fortunes to contain
multiple lines. The date client shown in Figure 3.20 can be used to read
the multi-line fortunes returned by the fortune server.

An echo server is a server that echoes back whatever it receives from a
client. For example, if a client sends the server the string Hello there! the
server will respond with the exact data it received from the client-—that
is, Hello there!

Write an echo server using the Java networking API described in
Section 3.6.1. This server will wait for a client connection using the
accept () method. When a client connection is received, the server will
loop, performing the following steps:

* Read data from the socket into a buffer.

* Write the contents of the buffer back to the client.

The server will break out of the loop only when it has determined that
the client has closed the connection.

The date server shown in Figure 3.19 wuses the
java.io.BufferedReader class. BufferedReader extends the
java.io.Reader class, which is used for reading character streams.
However, the echo server cannot guarantee that it will read
characters from clients; it may receive binary data as well. The
class java.io.InputStream deals with data at the byte level rather
than the character level. Thus, this echo server must use an object
that extends java.io.InputStream. The read() method in the
java.io.InputStream class returns —1 when the client has closed its
end of the socket connection.

In Exercise 3.6, the child process must output the Fibonacci sequence,
since the parent and child have their own copies of the data. Another
approach to designing this program is to establish a shared-memory
segment between the parent and child processes. This technique allows
the child to write the contents of the Fibonacci sequence to the shared-
memory segment and has the parent output the sequence when the child
completes. Because the memory is shared, any changes the child makes
to the shared memory will be reflected in the parent process as well.
This program will be structured using POSIX shared memory as
described in Section 3.5.1. The program first requires creating the
data structure for the shared-memory segment. This is most easily
accomplished using a struct. This data structure will contain two items:
(1) a fixed-sized array of size MAX_SEQUENCE that will hold the Fibonacci
values; and (2) the size of the sequence the child process is to generate
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—sequence_size where sequence_size < MAX.SEQUENCE. Thesg items
can be represented in a struct as follows:

#define MAX_SEQUENCE 10

typedef struct {
long fib_sequence [MAX_SEQUENCE] ;
int sequence size;

}shared.data;

The parent process will progress through the following steps:

a. Accept the parameter passed on the command line and perform
error checking to ensure that the parameter is < MAX_SEQUENCE.

b. Create a shared-memory segment of size shared data.
c. Attach the shared-memory segment to its address space.

d. Setthe value of sequence_size to the parameter on the command
line.

e. Fork the child process and invoke the wait () system call to wait
for the child to finish.

f. Output the value of the Fibonacci sequence in the shared-memory
segment.

g. Detach and remove the shared-memory segment.

Because the child process is a copy of the parent, the shared-memory
region will be attached to the child’s address space as well. The child
process will then write the Fibonacci sequence to shared memory and
finally will detach the segment.

One issue of concern with cooperating processes involves synchro-
nization issues. In this exercise, the parent and child processes must be
synchronized so that the parent does not output the Fibonacci sequence
until the child finishes generating the sequence. These two processes
will be synchronized using the wait () system call; the parent process
will invoke wait (), which will cause it to be suspended until the child
process exits.

Most UNIX and Linux systems provide the ipcs command. This com-
mand lists the status of various POSIX interprocess communication
mechanisms, including shared-memory segments. Much of the informa-
tion for the command comes from the data structure struct shmid.ds,
which is available in the /usr/include/sys/shm.h file. Some of the
fields of this structure include:

* int shm_segsz—size of the shared-memory segment

* short shm nattch—number of attaches to the shared-memory
segment

* struct ipc_perm shm_perm— permission structure of the
shared-memory segment
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The struct ipc_perm data structure (which is available in the file
/usr/include/sys/ipc.h) contains the fields:

* unsigned short uid—identifier of the user of the
shared-memory segment

* unsigned short mode—permission modes

* key_t key (on Linux systems, __key)—user-specified key identifier

The permission modes are set according to how the shared-memory
segment is established with the shmget () system call. Permissions are
identified according to the following:

meaning

...0002 | . Write permission of world. -

Permissions can be accessed by using the bitwise AND operator &. For
example, if the statementmode & 0400 evaluates to true, the permission
mode allows read permission by the owner of the shared-memory
segment.

Shared-memory segments can be identified according to a user-
specified key or according to the integer value returned from the
shmget () system call, which represents the integer identifier of the
shared-memory segment created. The shm_ds structure for a given
integer segment identifier can be obtained with the following shmct1 ()
system call:

/* identifier of the shared memory segment#*/
int segment_id;
shm_ds shmbuffer;

shmctl (segment_id, IPC_STAT, &shmbuffer);

If successful, shmct1 () returns 0; otherwise, it returns -1.

Write a C program that is passed an identifier for a shared-memory
segment. This program will invoke the shmct1 () function to obtain its
shm_ds structure. It will then output the following values of the given
shared-memory segment:

* Segment ID
¢ Key
* Mode
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o Owner UID 2
¢ Size

¢ Number of attaches

Project—UNIX Shell and History Feature

This project consists of modifying a C program which serves as a shell interface
that accepts user commands and then executes each command in a separate
process. A shell interface provides the user a prompt after which the next
command is entered. The example below illustrates the prompt sh> and the
user’s next command: cat prog.c. This command displays the file prog.c on
the terminal using the UNIX cat command.

sh> cat prog.c

One technique for implementing a shell interface is to have the parent
process first read what the user enters on the command line (i.e. cat prog.c),
and then create a separate child process that performs the command. Unless
otherwise specified, the parent process waits for the child to exit before
continuing. This is similar in functionality to what is illustrated in Figure
3.11. However, UNIX shells typically also allow the child process to run in the
background—or concurrently —as well by specifying the ampersand (&) at the
end of the command. By rewriting the above command as

sh> cat prog.c &

the parent and child processes now run concurrently.

The separate child process is created using the fork () system call and the
user’s command is executed by using one of the system calls in the exec()
family (as described in Section 3.3.1).

Simple Shell

A C program that provides the basic operations of a command line shell is
supplied in Figure 3.25. This program is composed of two functions: main()
and setup (). The setup () function reads in the user’s next command (which
can be up to 80 characters), and then parses it into separate tokens that are used
to fill the argument vector for the command to be executed. (If the command
is to be run in the background, it will end with '&’, and setup() will update
the parameter background so the main() function can act accordingly. This
program is terminated when the user enters <Control><D> and setup () then
invokes exit ().

The main() function presents the prompt COMMAND-> and then invokes
setup(), which waits for the user to enter a command. The contents of the
command entered by the user is loaded into the args array. For example, if
the user enters 1s -1 at the COMMAND-> prompt, args [0] becomes equal to
the string 1s and args[1] is set to the string to -1. (By “string”, we mean a
null-terminated, C-style string variable.)
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#include <stdio.h> ?
#include <unistd.h>

#define MAX_LINE 80

/** setup() reads in the next command line, separating it into
distinct tokens using whitespace as delimiters.

setup() modifies the args parameter so that it holds pointers
to the null-terminated strings that are the tokens in the most
recent user command line as well as a NULL pointer, indicating
the end of the argument list, which comes after the string
pointers that have been assigned to args. */

void setup{char inputBuffer([], char *args[],int *background)

{

/** full source code available online */

int main(void)

{

char inputBuffer [MAX LLINE]; /* buffer to hold command entered */
int background; /* equals 1 if a command is followed by ‘&’ */
char *args [MAX_LINE/2 + 1]; /* command line arguments */

while (1) {
background = 0;
printf (" COMMAND->") ;
/* setup() calls exit () when Control-D is entered */
setup (inputBuffer, args, &background) ;

* the steps are:

/*

(1) fork a child process using fork()

(2) the child process will invoke execvp ()
(3

if background == 1, the parent will wait,
otherwise it will invoke the setup() function again. */

Figure 3.25 OQuiline of simple shell.

This project is organized into two parts: (1) creating the child process and
executing the command in the child, and (2) modifying the shell to allow a
history feature.

Creating a Child Process
The first part of this project is to modify the main() function in Figure 3.25 so

that upon returning from setup (), a child process is forked and executes the
command specified by the user.
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As noted above, the setup () function loads the contents of the argssarray
with the command specified by the user. This args array will be passed to the
execvp () function, which has the following interface:

execvp(char *command, char *params[]);

where command represents the command to be performed and params stores the
parameters to this command. For this project, the execvp () function should be
invoked as execvp (args [0] ,args) ; besure to check the value of background
to determine if the parent process is to wait for the child to exit or not.

Creating a History Feature

The next task is to modify the program in Figure 3.25 so that it provides a
history feature that allows the user access up to the 10 most recently entered
commands. These commands will be numbered starting at 1 and will continue
to grow larger even past 10, e.g. if the user has entered 35 commands, the 10
most recent commands should be numbered 26 to 35. This history feature will
be implementing using a few different techniques.

First, the user will be able to list these commands when he/she presses
<Control> <C>, which is the SIGINT signal. UNIX systems use signals to
notify a process that a particular event has occurred. Signals may be either
synchronous or asynchronous, depending upon the source and the reason for
the event being signaled. Once a signal has been generated by the occurrence
of a certain event (e.g., division by zero, illegal memory access, user entering
<Control> <C>, etc.), the signal is delivered to a process where it must be
handled. A process receiving a signal may handle it by one of the following
techniques:

® Ignoring the signal
¢ using the default signal handler, or

* providing a separate signal-handling function.

Signals may be handled by first setting certain fields in the C structure
struct sigaction and then passing this structure to the sigaction()
function. Signals are defined in the include file /usr/include/sys/signal.h.
For example, the signal SIGINT represents the signal for terminating a program
with the control sequence <Control> <C>. The default signal handler for
SIGINT is to terminate the program.

Alternatively, a program may choose to set up its own signal-handling
function by setting the sa_handler field in struct sigaction to the name of
the function which will handle the signal and then invoking the sigaction()

function, passing it (1) the signal we are setting up a handler for, and (2) a =

pointer to struct sigaction.

In Figure 3.26 we show a C program that uses the function han-
dle_SIGINT() for handling the SIGINT signal. This function prints out the
message “Caught Control C” and then invokes the exit () function to ter-
minate the program. (We must use the write () function for performing output
rather than the more common printf() as the former is known as being
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#include <signal.h> ¢
#include <unistd.h>
#include <stdio.h>

#define BUFFER_SIZE 50
char buffer [BUFFER_SIZE] ;

/* the signal handling function */
void handle SIGINT ()

{

write (STDOUT_FILENO, buffer, strlen(buffer));

exit (0) ;

}

int main(int argc, char *argv[])

{
/* set up the signal handler */
struct sigaction handler;
handler.sa handler = handle SIGINT;
sigaction (SIGINT, &handler, NULL) ;

/* generate the output message */
strecpy (buffer, "Caught Control C\n");

/* loop until we receive <Controls><C> */
while (1)

'

return 0;

Figure 3.26 Signal-handling program.

signal-safe, indicating it can be called from inside a signal-handling function;
such guarantees cannot be made of printf ().) This program will run in the
while (1) loop until the user enters the sequence <Control> <C>. When this
occurs, the signal-handling function handle_SIGINT () is invoked.

The signal-handling function should be declared above main() and
because control can be transferred to this function at any point, no parameters
may be passed to it this function. Therefore, any data that it must access in your
program must be declared globally, i.e. at the top of the source file before your
function declarations. Before returning from the signal-handling function, it
should reissue the command prompt. :

If the user enters <Control><C>, the signal handler will output a list of the
most recent 10 commands. With this list, the user can run any of the previous
10 commands by entering r x where %’ is the first letter of that command. If
more than one command starts with 'x’, execute the most recent one. Also, the
user should be able to run the most recent command again by just entering 'r’.
You can assume that only one space will separate the 'r” and the first letter and
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that the letter will be followed by "\n". Again, ‘r’ alone will be immedjately
followed by the \n character if it is wished to execute the most recent command.

Any command that is executed in this fashion should be echoed on the
user’s screen and the command is also placed in the history buffer as the next
command. (r x does not go into the history list; the actual command that it
specifies, though, does.)

It the user attempts to use this history facility to run a command and the
command is detected to be erroneous, an error message should be given to the
user and the command not entered into the history list, and the execvp()
function should not be called. (It would be nice to know about improperly
formed commands that are handed off to execvp () that appear to look valid
and are not, and not include them in the history as well, but that is beyond the
capabilities of this simple shell program.) You should also modify setup() so
it returns an int signifying if has successfully created a valid args list or not,
and the main () should be updated accordingly.
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The process model introduced in Chapter 3 assumed that a process was an
executing program with a single thread of control. Most modern operating
systems now provide features enabling a process to contain multiple threads of
control. This chapter introduces many concepts associated with multithreaded
computer systems, including a discussion of the APIs for the Pthreads, Win32,
and Java thread libraries. We look at many issues related to multithreaded
programming and how it affects the design of operating systems. Finally, we
explore how the Windows XP and Linux operating systems support threads at
the kernel level.

CHAPTER OBJECTIVES

* To introduce the notion of a thread — a fundamental unit of CPU utilization
that forms the basis of multithreaded computer systems.

e To discuss the APIs for Phtreads, Win32, and Java thread libraries.

Overview

A thread is a basic unit of CPU utilization; it comprises a thread ID, a program
counter, a register set, and a stack. It shares with other threads belonging
to the same process its code section, data section, and other operating-system
resources, such as open files and signals. A traditional (or heavyweight) process
has a single thread of control. If a process has multiple threads of control, it
can perform more than one task at a time. Figure 4.1 illustrates the difference
between a traditional single-threaded process and a multithreaded process.

4.1.1 Motivation

Many software packages that run on modern desktop PCs are multithreaded.
An application typically is implemented as a separate process with several
threads of control. A web browser might have one thread display images or
text while another thread retrieves data from the network, for example. A
word processor may have a thread for displaying graphics, another thread
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Figure 4.1 Single-threaded and multithreaded processes.

for responding to keystrokes from the user, and a third thread for performing
spelling and grammar checking in the background.

In certain situations, a single application may be required to perform
several similar tasks. For example, a web server accepts client requests for
web pages, images, sound, and so forth. A busy web server may have several
(perhaps thousands) of clients concurrently accessing it. If the web server ran
as a traditional single-threaded process, it would be able to service only one
client at a time. The amount of time that a client might have to wait for its
request to be serviced could be enormous.

One solution is to have the server run as a single process that accepts
requests. When the server receives a request, it creates a separate process
to service that request. In fact, this process-creation method was in common
use before threads became popular. Process creation is time consuming and
resource intensive, as was shown in the previous chapter. If the new process
will perform the same tasks as the existing process, why incur all that overhead?
It is generally more efficient to use one process that contains multiple threads.
This approach would multithread the web-server process. The server would
create a separate thread that would listen for client requests; when arequest was
made, rather than creating another process, the server would create another
thread to service the request.

Threads also play a vital role in remote procedure call (RPC) systems. Recall
from Chapter 3 that RPCs allow interprocess communication by providing a

communication mechanism similar to ordinary function or procedure calls. - -

Typically, RPC servers are multithreaded. When a server receives a message, it
services the message using a separate thread. This allows the server to service
several concurrent requests. Java’s RMI systems work similarly.

Finally, many operating system kernels are now multithreaded; several
threads operate in the kernel, and each thread performs a specific task, such
as managing devices or interrupt handling. For example, Solaris creates a set



4.2

4.2 Multithreading Models 129

of threads in the kernel specifically for interrupt handling; Linux uses a kernel
thread for managing the amount of free memory in the system.

4.1.2 Benefits

The benefits of multithreaded programming can be broken down into four
major categories:

1. Responsiveness. Multithreading an interactive application may allow a
program to continue running even if part of it is blocked or is performing
a lengthy operation, thereby increasing responsiveness to the user. For
instance, a multithreaded web browser could still allow user interaction
in one thread while an image was being loaded in another thread.

2. Resource sharing. By default, threads share the memory and the
resources of the process to which they belong. The benefit of sharing
code and data is that it allows an application to have several different
threads of activity within the same address space.

3. Economy. Allocating memory and resources for process creation is costly.
Because threads share resources of the process to which they belong, it
is more economical to create and context-switch threads. Empirically
gauging the difference in overhead can be difficult, but in general it is
much more time consuming to create and manage processes than threads.
In Solaris, for example, creating a process is about thirty times slower than
is creating a thread, and context switching is about five times slower.

4. Utilization of multiprocessor architectures. The benefits of multithread-
ing can be greatly increased in a multiprocessor architecture, where
threads may be running in parallel on different processors. A single-
threaded process can only run on one CPU, no matter how many are
available. Multithreading on a multi-CPU machine increases concurrency.

Multithreading Models

Our discussion so far has treated threads in a generic sense. However, support
for threads may be provided either at the user level, for user threads, or by the
kernel, for kernel threads. User threads are supported above the kernel and
are managed without kernel support, whereas kernel threads are supported
and managed directly by the operating system. Virtually all contemporary
operating systems—including Windows XP, Linux, Mac OS X, Solaris, and
True4 UNIX (formerly Digital UNIX)—support kernel threads.

Ultimately, there must exist a relationship between user threads and kernel
threads. In this section, we look at three common ways of establishing this
relationship. -

4.2.1 Many-to-One Model

The many-to-one model (Figure 4.2) maps many user-level threads to one
kernel thread. Thread management is done by the thread library in user
space, so it is efficient; but the entire process will block if a thread makes a
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Figure 4.2 Many-to-one modei.

blocking system call. Also, because only one thread can access the kernel at a
time, multiple threads are unable to run in parallel on multiprocessors. Green
threads—a thread library available for Solaris—uses this model, as does GNU
Portable Threads.

4.2.2 One-to-One Model

The one-to-one model (Figure 4.3) maps each user thread to a kernel thread. It
provides more concurrency than the many-to-one model by allowing another
thread to run when a thread makes a blocking system call; it also allows
multiple threads to run in parallel on multlprocessors The only drawback to
this model is that creating a user thread requires creating the corresponding
kernel thread. Because the overhead of creating kernel threads can burden the
performance of an application, most implementations of this model restrict the
number of threads supported by the system. Linux, along with the family of
Windows operating systems—including Windows 95, 98, NT, 2000, and XP—
implement the one-to-one model.

4.2.3 Many-to-Many Model

The many-to-many model (Figure 4.4) multiplexes many user-level threads to
a smaller or equal number of kernel threads. The number of kernel threads
may be specific to either a particular application or a particular machine (an

«—— user thread

Figure 4.3 One-to-one model.



4.3

4,3 Thread Libraries 131

34— user thread

Figure 4.4 Many-to-many model.

application may be allocated more kernel threads on a multiprocessor than
on a uniprocessor). Whereas the many-to-one model allows the developer to
create as many user threads as she wishes, true concurrency is not gained
because the kernel can schedule only one thread at a time. The one-to-one
model allows for greater concurrency, but the developer has to be careful not
to create too many threads within an application (and in some instances may
be limited in the number of threads she can create). The many-to-many model
suffers from neither of these shortcomings: Developers can create as many user
threads as necessary, and the corresponding kernel threads can run in parallel
on a multiprocessor. Also, when a thread performs a blocking system call, the
kernel can schedule another thread for execution.

One popular variation on the many-to-many mode! still multiplexes many
user-level threads to a smaller or equal number of kernel threads but also allows
a user-level thread to be bound to a kernel thread. This variation, sometimes
referred to as the two-level model (Figure 4.5), is supported by operating systems
such as IRIX, HP-UX, and Tru64 UNIX. The Solaris operating system supported
the two-level model in versions older than Solaris 9. However, beginning with
Solaris 9, this system uses the one-to-one model.

Thread Libraries

A thread library provides the programmer an API for creating and managing
threads. There are two primary ways of implementing a thread library. The first
approach is to provide a library entirely in user space with no kernel support.
All code and data structures for the library exist in user space. This means that
invoking a function in the library results in a local function call in user space
and not a system call.

The second approach is to implement a kernel-level library supported
directly by the operating system. In this case, code and data structures for
the library exist in kernel space. Invoking a function in the API for the library
typically results in a system call to the kernel.

Three main thread libraries are in use today: (1) POSIX Pthreads, (2) Win32,
and (3) Java. Pthreads, the threads extension of the POSIX standard, may be
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Figure 4.5 Two-level model.

provided as either a user- or kernel-level library. The Win32 thread library is a
kernel-level library available on Windows systems. The Java thread API allows
thread creation and management directly in Java programs. However, because
in most instances the JVM is running on top of a host operating system, the Java
thread API is typically implemented using a thread library available on the
host system. This means that on Windows systems, Java threads are typically
implemented using the Win32 API; UNIX and Linux systems often use Pthreads.

In the remainder of this section, we describe basic thread creation using
these three thread libraries. As an illustrative example, we design a multi-
threaded program that performs the summation of a non-negative integer in a
separate thread using the well-known summation function:

A\]
SUM = Zi

i=0

For example, if N were 5, this function would represent the summation from 0
to 5, which is 15. Each of the three programs will be run with the upper bounds
of the summation entered on the command line; thus, if the user enters 8, the
summation of the integer values from 0 to 8 will be output.

4.3.1 Pthreads

Pthreads refers to the POSIX standard (IEEE 1003.1c) defining an API for thread
creation and synchronization. This is a specification for thread behavior, not an
implementation. Operating system designers may implement the specification in
any way they wish. Numerous systems implement the Pthreads specification,
including Solaris, Linux, Mac 05 X, and Tru64 UNIX. Shareware implementations
are available in the public domain for the various Windows operating systems
as well.

The C program shown in Figure 4.6 demonstrates the basic Pthreads API for
constructing a multithreaded program that calculates the summation of a non-
negative integer in a separate thread. In a Pthreads program, separate threads
begin execution in a specified function. In Figure 4.6, this is the runner ()
function. When this program begins, a single thread of control begins in
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#include <pthread.h> s
#include <stdio.h>

int sum; /* this data is shared by the thread(s) */
void *runner(void *param); /* the thread */

int main(int arge, char *argv([])

{
pthread.t tid; /* the thread identifier */
pthreadattr t attr; /* set of thread attributes */

if (arge '= 2) {
fprintf (stderr, "usage: a.out <integer value>\n");
return -1;

!

if (atoi(argv[i]l) < 0) {
fprintf (stderr, "%d must be »>= 0\n",atoi(argv[1]));
return -1;

}

/* get the default attributes */
pthread.attr_init (&attr) ;

/* create the thread */

pthread create (&tid, &attr, runner,argv[1l]) ;
/* walit for the thread to exit */
pthread join (tid, NULL) ;

printf ("sum = %d\n",sum) ;

}

/* The thread will begin control in this function */
void *runner (void *param)
{

int i, upper = atoil (param) ;

sum = 0;

for (1 = 1; i <= upper; i++)
sum += 1;

pthread.exit (0) ;

}

Figure 4.6 Multithreaded C program using the Pthreads API.

main(). After some initialization, main() creates a second thread that begins
control in the runner () function. Both threads share the global data sum.
Let’s look more closely at this program. All Pthreads programs must
include the pthread.h header file. The statement pthread t tid declares
the identifier for the thread we will create. Each thread has a set of attributes,
including stack size and scheduling information. The pthread.attr_t attr
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declaration represents the attributes for the thread. We set the attribufes in
the function call pthread_attr_init (&attr). Because we did not explicitly
set any attributes, we use the default attributes provided. (In Chapter 5, we
will discuss some of the scheduling attributes provided by the Pthreads API.) A
separate thread is created with the pthread_create () function call. Inaddition
to passing the thread identifier and the attributes for the thread, we also pass
the name of the function where the new thread will begin execution—in this
case, the runner () function. Last, we pass the integer parameter that was
provided on the command line, argv [1].

At this point, the program has two threads: the initial (or parent) thread
in main() and the summation (or child) thread performing the summation
operation in the runner() function. After creating the summation thread,
the parent thread will wait for it to complete by calling the pthread _join()
function. The summation thread will complete when it calls the function
pthread_exit (). Once the summation thread has returned, the parent thread
will output the value of the shared data sum.

4.3.2 Win32 Threads

The technique for creating threads using the Win32 thread library is similar to
the Pthreads technique in several ways. We illustrate the Win32 thread API in
the C program shown in Figure 4.7. Notice that we must include the windows . h
header file when using the Win32 APL

Just as in the Pthreads version shown in Figure 4.6, data shared by the
separate threads—in this case, Sum—are declared globally (the DWORD data
type is an unsigned 32-bit integer. We also define the Summation() function
that is to be performed in a separate thread. This function is passed a pointer to
a void, which Win32 defines as LPVOID. The thread performing this function
sets the global data Sum to the value of the summation from 0 to the parameter
passed to Summation().

Threads are created in the Win32 API using the CreateThread () function
and—just as in Pthreads—a set of attributes for the thread is passed to this
function. These attributes include security information, the size of the stack,
and a flag that can be set to indicate if the thread is to start in a suspended
state. In this program, we use the default values for these attributes (which do
not initially set the thread to a suspended state and instead make it eligible
to be run by the CPU scheduler). Once the summation thread is created, the
parent must wait for it to complete before outputting the value of Sum, as
the value is set by the summation thread. Recall that the Pthread program
(Figure 4.6) had the parent thread wait for the summation thread using the
pthread_join() statement. We perform the equivalent of this in the Win32 API
using the WaitForSingleObject () function, which causes the creating thread
to block until the summation thread has exited. (We will cover synchromzahon
objects in more detail in Chapter 6.)

4.3.3 Java Threads

Threads are the fundamental model of program execution in a Java program,
and the Java language and its API provide a rich set of features for the creation
and management of threads. All Java programs comprise at least a single thread
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#include <windows.h> 2
#include <stdio.h>

DWORD Sum; /* data is shared by the thread(s) */

/* the thread runs in this separate function */

DWORD WINAPI Summation (LPVOID Param)

{

}

DWORD Upper = * (DWORD*)Param;

for (DWORD 1 = 0; i <= Upper; i++)
Sum += 1i;

return 0;

int main(int argc, char *argv([])

{

DWORD ThreadId;

HANDLE ThreadHandle;

int Param;

/* perform some basic error checking */

if (argc !'= 2) {
fprintf (stderr, "An integer parameter is required\n");
return -1;

}

Param = atoi(argv(1l]);

if (Param < 0) {
fprintf (stderr, "An integer »>= 0 is required\n");
return -1;

}

// create the thread
ThreadHandle = CreateThread(
NULL, // default security attributes
0, // default stack size
Summation, // thread function
&Param, // parameter to thread function
0, // default creation flags
&ThreadId); // returns the thread identifier

if (ThreadHandle != NULL) {
// now wait for the thread to finish

WaitForSingleObject (ThreadHandle, INFINITE) ;

// close the thread handle
CloseHandle (ThreadHandle) ;

printf ("sum = %d\n", Sum) ;

}

Figure 4.7 Multithreaded C program using the Win32 API.
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of control—even a simple Java program consisting of only a main() méthod
runs as a single thread in the JVM.

There are two techniques for creating threads in a Java program. One
approach is to create a new class that is derived from the Thread class and
to override its run() method. An alternative—and more commonly used —
technique is to define a class that implements the Runnable interface. The
Runnable interface is defined as follows:

public interface Runnable

{
}

When a class implements Runnable, it must define a run () method. The code
implementing the run () method is what runs as a separate thread.

Figure 4.8 shows the Java version of a multithreaded program that
determines the summation of a non-negative integer. The Summation class
implements the Runnable interface. Thread creation is performed by creating
an object instance of the Thread class and passing the constructor a Runnable
object.

Creating a Thread object does not specifically create the new thread; rather,
it is the start() method that actually creates the new thread. Calling the
start () method for the new object does two things:

public abstract void run();

1. Itallocates memory and initializes a new thread in the JVM.

2. It calls the run() method, making the thread eligible to be run by the
JVM. (Note that we never call the run() method directly. Rather, we call
the start () method, and it calls the run () method on our behalf.)

When the summation program runs, two threads are created by the JVM.
The first is the parent thread, which starts execution in the main() method.
The second thread is created when the start () method on the Thread object
is invoked. This child thread begins execution in the run() method of the
Summation class. After outputting the value of the summation, this thread
terminates when it exits from its run () method.

Sharing of data between threads occurs easily in Win32 and Pthreads, as
shared data are simply declared globally. As a pure object-oriented language,
Java has no such notion of global data; if two or more threads are to share
data in a Java program, the sharing occurs by passing reference to the shared
object to the appropriate threads. In the Java program shown in Figure 4.8, the
main thread and the summation thread share the the object instance of the Sum
class. This shared object is referenced through the appropriate getSum() and
setSum() methods. (You might wonder why we don’t use an Integer object
rather than designing a new sum class. The reason is that the Integer class is
immutable—that is, once its value is set, it cannot change.)

Recall that the parent threads in the Pthreads and Win32 libraries use
pthread_join() and WaitForSingleObject() (respectively) to wait for
the summation threads to finish before proceeding. The join() method
in Java provides similar functionality. (Notice that join() can throw an
InterruptedException, which we choose to ignore.)
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class Sum

{

®

private int sum;

public int getSum{) {
return sum;

}

public void setSum{int sum) {
this.sum = sum;

}

class Summation implements Runnable
private int upper;
private Sum sumValue;

public Summation (int upper, Sum sumValue) {
this.upper = upper;
this.sumValue = sumValue;

}

public void run() {
int sum = 0;

for (int 1 = 0; 1 <= upper; i++)
sum += 1i;
sumValue.setSum(sum) ;

}
}

public class Driver
{ .
public¢ static void main(Stringl[] args) {
if (args.length > 0) |{
if (Integer.parselInt(args([0]) < 0)
System.err.println(args[0] + " must be >= 0.");
else {
// create the object to be shared
Sum sumObject = new Sum() ;
int upper = Integer.parselnt (args[0]);

137

Thread thrd = new Thread (new Summation(upper, sumObject));

thrd.start () ;

try |
thrd.join();
System.out.println

("The sum of "+upper+" is "+sumObject.getSuml());

} catch (InterruptedException ie) { }
}
}

else
System.err.println("Usage: Summation <integer values"); }

Figure 4.8 Java program for the summation of a non-negative integer.
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The ]VM and Host Operatmg System
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4.4 Threading Issues

In this section, we discuss some of the issues to consider with multithreaded
programs.

4.41 The fork() and exec() System Calls

In Chapter 3, we described how the fork() system call is used to create a
separate, duplicate process. The semantics of the fork() and exec() system
calls change in a multithreaded program.

If one thread in a program calls fork (), does the new process duplicate
all threads, or is the new process single-threaded? Some UNIX systems have
chosen to have two versions of fork(), one that duplicates all threads and
another that duplicates only the thread that invoked the fork () system call.

The exec() system call typically works in the same way as described
in Chapter 3. That is, if a thread invokes the exec () system call, the program
specified in the parameter to exec () will replace the entire process—including
all threads.

Which of the two versions of fork() to use depends on the apphca’aon
If exec() is called immediately after forking, then duplicating all threads is
unnecessary, as the program specified in the parameters to exec () will replace
the process. In this instance, duplicating only the calling thread is appropriate.
If, however, the separate process does not call exec () after forking, the separate
process should duplicate all threads.
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4.4.2 Cancellation s

Thread cancellation is the task of terminating a thread before it has completed.
For example, if multiple threads are concurrently searching through a database
and one thread returns the result, the remaining threads might be canceled.
Another situation might occur when a user presses a button on a web browser
that stops a web page from loading any further. Often, a web page is loaded
using several threads—each image is loaded in a separate thread. When a
user presses the stop button on the browser, all threads loading the page are
canceled.

A thread that is to be canceled is often referred to as the target thread.
Cancellation of a target thread may occur in two different scenarios:

1. Asynchronous cancellation. One thread immediately terminates the
target thread.

2. Deferred cancellation. The target thread periodically checks whether it
should terminate, allowing it an opportunity to terminate itself in an
orderly fashion.

The difficulty with cancellation occurs in situations where resources have
been allocated to a canceled thread or where a thread is canceled while in
the midst of updating data it is sharing with other threads. This becomes
especially troublesome with asynchronous cancellation. Often, the operating
system will reclaim system resources from a canceled thread but will not
reclaim all resources. Therefore, canceling a thread asynchronously may not
free a necessary system-wide resource.

With deferred cancellation, in contrast, one thread indicates that a target
thread is to be canceled, but cancellation occurs only after the target thread has
checked a flag to determine if it should be canceled or not. This allows a thread
to check whether it should be canceled at a point when it can be canceled safely.
Pthreads refers to such points as cancellation points.

4.4.3 Signal Handling

A signal is used in UNIX systems to notify a process that a particular event has
occurred. A signal may be received either synchronously or asynchronously,
depending on the source of and the reason for the event being signaled. All
signals, whether synchronous or asynchronous, follow the same pattern:

1. A signal is generated by the occurrence of a particular event.
2. A generated signal is delivered to a process.

3. Once delivered, the signal must be handled.

Examples of synchronous signals include illegal memory access and
division by 0. If a running program performs either of these actions, a signal
is generated. Synchronous signals are delivered to the same process that
performed the operation that caused the signal (that is the reason they are
considered synchronous).
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When a signal is generated by an event external to a running process$, that
process receives the signal asynchronously. Examples of such signals include
terminating a process with specific keystrokes (such as <control><C>) and
having a timer expire. Typically, an asynchronous signal is sent to another
process.

Every signal may be handled by one of two possible handlers:

1. A default signal handler
2. A user-defined signal handler

Every signal has a default signal handler that is run by the kernel when
handling that signal. This default action can be overridden by a user-defined
signal handler that is called to handle the signal. Signals may be handled in
different ways. Some signals (such as changing the size of a window) may
simply be ignored; others (such as an illegal memory access) may be handled
by terminating the program.

Handling signals in single-threaded programs is straightforward; signals
are always delivered to a process. However, delivering signals is more
complicated in multithreaded programs, where a process may have several
threads. Where, then, should a signal be delivered?

In general, the following options exist:

Deliver the signal to the thread to which the signal applies.
Deliver the signal to every thread in the process.

Deliver the signal to certain threads in the process.

Ll AN .

Assign a specific thread to receive all signals for the process.

The method for delivering a signal depends on the type of signal generated.
For example, synchronous signals need to be delivered to the thread causing
the signal and not to other threads in the process. However, the situation with
asynchronous signals is not as clear. Some asynchronous signals—such as a
signal that terminates a process (<control><C>, for example)—should be
sent to all threads.

Most multithreaded versions of UNIX allow a thread to specify which
signals it will accept and which it will block. Therefore, in some cases, an asyn-
chronous signal may be delivered only to those threads that are not blocking
it. However, because signals need to be handled only once, a signal is typically
delivered only to the first thread found that is not blocking it. The standard
UNIX function for delivering a signal iskill(aid_t aid, int signal);here,
we specify the process (aid) to which a particular signal is to be delivered.
However, POSIX Pthreads also provides the pthread kill(pthread t tid,

int signal) function, which allows a signal to be delivered to a specified - -

thread (tid.)

Although Windows does not explicitly provide support for signals, they
can be emulated using asynchronous procedure calls (APCs). The APC facility
allows a user thread to specify a function that is to be called when the user
thread receives notification of a particular event. As indicated by its name,
an APC is roughly equivalent to an asynchronous signal in UNIX. However,
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whereas UNIX must contend with how to deal with signals in a multithreaded
environment, the APC facility is more straightforward, as an APC is delivered
to a particular thread rather than a process.

4.4.4 Thread Pools

In Section 4.1, we mentioned multithreading in a web server. In this situation,
whenever the server receives a request, it creates a separate thread to service
the request. Whereas creating a separate thread is certainly superior to creating
a separate process, a multithreaded server nonetheless has potential problems.
The first concerns the amount of time required to create the thread prior to
servicing the request, together with the fact that this thread will be discarded
once it has completed its work. The second issue is more troublesome: If we
allow all concurrent requests to be serviced in a new thread, we have not placed
a bound on the number of threads concurrently active in the system. Unlimited
threads could exhaust system resources, such as CPU time or memory. One
solution to this issue is to use a thread pool.

The general idea behind a thread pool is to create a number of threads at
process startup and place them into a pool, where they sit and wait for work.
When a server receives a request, it awakens a thread from this pool —if one
is available—and passes it the request to service. Once the thread completes
its service, it returns to the pool and awaits more work. If the pool contains no
available thread, the server waits until one becomes free.

Thread pools offer these benefits:

1. Servicing a request with an existing thread is usually faster than waiting
to create a thread.

2. A thread pool limits the number of threads that exist at any one point.
This is particularly important on systems that cannot support a large
number of concurrent threads.

The number of threads in the pool can be set heuristically based on factors
such as the number of CPUs in the system, the amount of physical memory,
and the expected number of concurrent client requests. More sophisticated
thread-pool architectures can dynamically adjust the number of threads in the
pool according to usage patterns. Such architectures provide the further benefit
of having a smaller pool—thereby consuming less memory—when the load
on the system is low.

The Win32 API provides several functions related to thread pools. Using
the thread pool APl is similar to creating a thread with the Thread Create()
function, as described in Section 4.3.2. Here, a function that is to run as a
separate thread is defined. Such a function may appear as follows:

DWORD WINAPI PoolFunction (AVOID Param) {
/**
* this function runs as a separate thread.
**/

}

A pointer to PoolFunction() is passed to one of the functions in the thread
pool API, and a thread from the pool executes this function. One such member
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in the thread pool APl is the QueueUserWorkItem() function, which is passed
three parameters:

* LPTHREAD_START_ROUTINE Function—a pointer to the function that is to
run as a separate thread

® PVOID Param—the parameter passed to Function

® ULONG Flags—flags indicating how the thread pool is to create and
manage execution of the thread

An example of an invocation is:
QueueUserWorkItem(&PoolFunction, NULL, 0);

This causes a thread from the thread pool to invoke PoolFunction() on behalf
of the programmer. In this instance, we pass no parameters to PoolFunc-
tion(). Because we specify 0 as a flag, we provide the thread pool with no
special instructions for thread creation.

Other members in the Win32 thread pool APl include utilities that invoke
functions at periodic intervals or when an asynchronous 1/0 request completes.
The java.util.concurrent package in Java 1.5 provides a thread pool utility
as well.

4.4.5 Thread-Specific Data

Threads belonging to a process share the data of the process. Indeed, this
sharing of data provides one of the benefits of multithreaded programming.
However, in some circumstances, each thread might need its own copy of
certain data. We will call such data thread-specific data. For example, in a
transaction-processing system, we might service each transaction in a separate
thread. Furthermore, each transaction may be assigned a unique identifier. To
associate each thread with its unique identifier, we could use thread-specific
data. Most thread libraries —including Win32 and Pthreads—provide some
form of support for thread-specific data. Java provides support as well.

4.4.6 Scheduler Activations

A final issue to be considered with multithreaded programs concerns com-
munication between the kernel and the thread library, which may be required
by the many-to-many and two-level models discussed in Section 4.2.3. Such
coordination allows the number of kernel threads to be dynamically adjusted
to help ensure the best performance.

Many systems implementing either the many-to-many or two-level model
place an intermediate data structure between the user and kernel threads. This

data structure—typically known as a lightweight process, or LWP—is shown in- -

Figure 4.9. To the user-thread library, the LWP appears to be a virtual processor on
which the application can schedule a user thread to run. Each LWP is attached
to a kernel thread, and it is kernel threads that the operating system schedules
to run on physical processors. If a kernel thread blocks (such as while waiting
for an 1/0 operation to complete), the LWP blocks as well. Up the chain, the
user-level thread attached to the LWP also blocks.
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3 <« user thread

«——— |ightweight process
° <«——kernel thread

Figure 4.9 Lightweight process (LWP)

Anapplication may require any number of LWPs to run efficiently. Consider
a CPU-bound application running on a single processor. In this scenario, only
one thread can run at once, so one LWP is sufficient. An application that is I/O-
intensive may require multiple LWPs to execute, however. Typically, an LWP is
required for each concurrent blocking system call. Suppose, for example, that
five different file-read requests occur simultaneously. Five LWPs are needed,
because all could be waiting for /0 completion in the kernel. If a process has
only four LWPs, then the fifth request must wait for one of the LWPs to return
from the kernel.

One scheme for communication between the user-thread library and the
kernel is known as scheduler activation. It works as follows: The kernel
provides an application with a set of virtual processors (LWPs), and the
application can schedule user threads onto an available virtual processor.
Furthermore, the kernel must inform an application about certain events. This
procedure is known as an upcall. Upcalls are handled by the thread library
with an upcall handler, and upcall handlers must run on a virtual processor.
One event that triggers an upcall occurs when an application thread is about to
block. In this scenario, the kernel makes an upcall to the application informing
it that a thread is about to block and identifying the specific thread. The kernel
then allocates a new virtual processor to the application. The application runs
an upcall handler on this new virtual processor, which saves the state of the
blocking thread and relinquishes the virtual processor on which the blocking
thread is running. The upcall handler then schedules another thread that is
eligible to run on the new virtual processor. When the event that the blocking
thread was waiting for occurs, the kernel makes another upcall to the thread
library informing it that the previously blocked thread is now eligible to run.
The upcall handler for this event also requires a virtual processor, and the kernel
may allocate a new virtual processor or preempt one of the user threads and
run the upcall handler on its virtual processor. After marking the unblocked
thread as eligible to run, the application schedules an eligible thread to run on
an available virtual processor.

Operating-System Examples

In this section, we explore how threads are implemented in Windows XP and
Linux systems.



144

Chapter4 Threads

4.5.1 Windows XP Threads 8

Windows XP implements the Win32 APL. The Win32 APl is the primary API for
the family of Microsoft operating systems (Windows 95, 98, NT, 2000, and XP).
Indeed, much of what is mentioned in this section applies to this entire family
of operating systems.

A Windows XP application runs as a separate process, and each process
may contain one or more threads. The Win32 API for creating threads is
covered in Section 4.3.2. Windows XP uses the one-to-one mapping described
in Section 4.2.2, where each user-level thread maps to an associated kernel
thread. However, Windows XP also provides support for a fiber library, which
provides the functionality of the many-to-many model (Section 4.2.3). By using
the thread library, any thread belonging to a process can access the address
space of the process.

The general components of a thread include:

¢ A thread ID uniquely identifying the thread
® A register set representing the status of the processor

® A user stack, employed when the thread is running in user mode, and a
kernel stack, employed when the thread is running in kernel mode

® A private storage area used by various run-time libraries and dynamic link
libraries (DLLs)

The register set, stacks, and private storage area are known as the context
of the thread. The primary data structures of a thread include:

e ETHREAD—executive thread block
® KTHREAD—Kkernel thread block

e TEB—thread environment block

The key components of the ETHREAD include a pointer to the process
to which the thread belongs and the address of the routine in which the
thread starts control. The ETHREAD also contains a pointer to the corresponding
KTHREAD.

The KTHREAD includes scheduling and synchronization information for
the thread. In addition, the KTHREAD includes the kernel stack (used when the
thread is running in kernel mode) and a pointer to the TEB.

The ETHREAD and the KTHREAD exist entirely in kernel space; this means
that only the kernel can access them. The TEB is a user-space data structure that
is accessed when the thread is running in user mode. Among other fields, the
TEB contains the thread identifier, a user-mode stack, and an array for thread-

specific data (which Windows XP terms thread-local storage). The structure of ™"~

a Windows XP thread is illustrated in Figure 4.10.

4.5.2 Linux Threads

Linux provides the fork() system call with the traditional functionality of
duplicating a process, as described in Chapter 3. Linux also provides the ability
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Figure 4.10 Data structures of a Windows XP thread.

to create threads using the clone() system call. However, Linux does not
distinguish between processes and threads. In fact, Linux generally uses the
term task—rather than process or thread—when referring to a flow of control
within a program. When clone () is invoked, it is passed a set of flags, which
determine how much sharing is to take place between the parent and child
tasks. Some of these flags are listed below:

fag | )
CLONE_FS | File-system information is shared,
 CLONE VM | The same memory space is shared.
CLONE 'STGHAND Signal handlers are shared.
CLONE_FILES The set'of open files is shared.

For example, if clone() is passed the flags CLONE_FS, CLONE_VM,
CLONE_SIGHAND, and CLONE FILES, the parent and child tasks will share the
same file-system information (such as the current working directory), the
same memory space, the same signal handlers, and the same set of open files.
Using clone () in this fashion is equivalent to creating a thread as described
in this chapter, since the parent task shares most of its resources with its child
task. However, if none of these flags are set when clone() is invoked, no
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sharing takes place, resulting in functionality similar to that provided by the
fork() system call.

The varying level of sharing is possible because of the way a task is
represented in the Linux kernel. A unique kernel data structure (specifically,
struct task_struct) exists for each task in the system. This data structure,
instead of storing data for the task, contains pointers to other data structures
where these data are stored —for example, data structures that represent the list
of open files, signal-handling information, and virtual memory. When fork ()
is invoked, a new task is created, along with a copy of all the associated data
structures of the parent process. A new task is also created when the clone ()
system call is made. However, rather than copying all data structures, the new
task points to the data structures of the parent task, depending on the set of
flags passed to clone ().

Summary

A thread is a flow of control within a process. A multithreaded process
contains several different flows of control within the same address space.
The benefits of multithreading include increased responsiveness to the user,
resource sharing within the process, economy, and the ability to take advantage
of multiprocessor architectures.

User-level threads are threads that are visible to the programmer and are
unknown to the kernel. The operating-system kernel supports and manages
kernel-level threads. In general, user-level threads are faster to create and
manage than are kernel threads, as no intervention from the kernel is required.
Three different types of models relate user and kernel threads: The many-to-one
model maps many user threads to a single kernel thread. The one-to-one model
maps each user thread to a corresponding kernel thread. The many-to-many
model multiplexes many user threads to a smaller or equal number of kernel
threads.

Most modern operating systems provide kernel support for threads; among
these are Windows 98, NT, 2000, and XP, as well as Solaris and Linux.

Thread libraries provide the application programmer with an API for
creating and managing threads. Three primary thread libraries are in common
use: POSIX Pthreads, Win32 threads for Windows systems, and Java threads.

Multithreaded programs introduce many challenges for the programmer,
including the semantics of the fork () and exec () system calls. Other issues
include thread cancellation, signal handling, and thread-specific data.

Exercises

4.1 Provide two programming examples in which multithreading does not
provide better performance than a single-threaded solution.

4.2 Describe the actions taken by a thread library to context switch between
user-level threads.
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Under what circumstances does a multithreaded solution using multi-
ple kernel threads provide better performance than a single-threaded
solution on a single-processor system?

Which of the following components of program state are shared across
threads in a multithreaded process?

a. Register values
b. Heap memory
Global variables

o

d. Stack memory

Can a multithreaded solution using multiple user-level threads achieve
better performance on a multiprocessor system than on a single-
processor system?

As described in Section 4.5.2, Linux does not distinguish between
processes and threads. Instead, Linux treats both in the same way,
allowing a task to be more akin to a process or a thread depending
on the set of flags passed to the clone() system call. However, many
operating systems—such as Windows XP and Solaris—treat processes
and threads differently. Typically, such systems use a notation wherein
the data structure for a process contains pointers to the separate threads
belonging to the process. Contrast these two approaches for modeling
processes and threads within the kernel.

The program shown in Figure 4.11 uses the Pthreads API. What would
be output from the program at LINE ¢ and LINE p?

Consider a multiprocessor system and a multithreaded program written
using the many-to-many threading model. Let the number of user-level
threads in the program be more than the number of processors in the
system. Discuss the performance implications of the following scenarios.

a. The number of kernel threads allocated to the program is less than
the number of processors.

b. The number of kernel threads allocated to the program is equal
to the number of processors.

c. The number of kernel threads allocated to the program is greater
than the number of processors but less than the number of
user-level threads.

Write a multithreaded Java, Pthreads, or Win32 program that outputs
prime numbers. This program should work as follows: The user will
run the program and will enter a number on the command line. The
program will then create a separate thread that outputs all the prime
numbers less than or equal to the number entered by the user.

Modify the socket-based date server (Figure 3.19) in Chapter 3 so that
the server services each client request in a separate thread.



148

Chapter4 Threads

4.11

#include <pthread.h> s
#include <stdio.h>

int value = 0;
void *runner(void *param); /* the thread */

int main{int argc, char *argvl[l)
{

int pid;

pthread. t tid;

pthread.attr_t attr;

pid = fork();

if (pid == 0) {/* child process */
pthread.attr.init (&attr) ;
pthread.create (&tid, &attr, runner, NULL) ;
pthread_join(tid,NULL) ;
printf ("CHILD: value = %4",value); /* LINE C */
}
else if (pid > 0) {/* parent process */
wailt (NULL) ;
printf ("PARENT: value = %d",value); /* LINE P */
}
}

void *runner (void *param)
value = 5;
pthread exit (0) ;

}

Figure 4.11 C program for question 4.7.

The Fibonacci sequence is the series of numbers 0,1,1,2,3,5,8,

Formally, it can be expressed as:

fib[) = O
fiby =1
fibn = fl'b”,] + fl‘b”,2

Write a multithreaded program that generates the Fibonacci series using
either the Java, Pthreads, or Win32 thread library. This program should

work as follows: The user will enter on the command line the number . .

of Fibonacci numbers that the program is to generate. The program will
then create a separate thread that will generate the Fibonacci numbers,
placing the sequence in data that is shared by the threads (an array is
probably the most convenient data structure). When the thread finishes
execution, the parent thread will output the sequence generated by
the child thread. Because the parent thread cannot begin outputting
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the Fibonacci sequence until the child thread finishes, this will yequire
having the parent thread wait for the child thread to finish, using the
techniques described in Section 4.3.

4.12 Exercise 3.9 in Chapter 3 specifies designing an echo server using the
Java threading AP1. However, this server is single-threaded, meaning the
server cannot respond to concurrent echo clients until the current client
exits. Modify the solution to Exercise 3.9 so that the echo server services
each client in a separate request.

Project—Matrix Multiplication

Given two matrices Aand B, where Ais a matrix with M rows and K columns
and matrix B contains K rows and N columns, the matrix product of Aand B
is matrix C, where C contains M rows and N columns. The entry in matrix C
for row i column j (C; ;) is the sum of the products of the elements for row i in
matrix Aand column j in matrix B. That is,

K
Cl] = Z Ai.n X Bn.j
n=1

For example, if A were a 3-by-2 matrix and B were a 2-by-3 matrix, element
C3.1 would be the sum of As 1 x By i and As» x Baj.

For this project, calculate each element C; ; in a separate worker thread. This
will involve creating M x N worker threads. The main-—or parent-—thread
will initialize the matrices A and B and allocate sufficient memory for matrix
C, which will hold the product of matrices A and B. These matrices will be
declared as global data so that each worker thread has access to A, B, and C.

Matrices Aand B can be initialized statically, as shown below:

#define M 3
#define K 2
#define N 3

int A [M] [K]
int B [K] [N]
int C [M] [NJ];

{ {1,4}, {2,5}, {3,6} };
{ {8,7.6}, {5.4,3} };

1

Alternatively, they can be populated by reading in values from a file.
Passing Parameters to Each Thread

The parent thread will create M x N worker threads, passing each worker the
values of row i and column ; that it is to use in calculating the matrix product.
This requires passing two parameters to each thread. The easiest approach with
Pthreads and Win32 is to create a data structure using a struct. The members
of this structure are 7 and j, and the structure appears as follows:
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/* structure for passing data to threads */ #
struct v

int i; /* row */

int j; /* column */

b

Both the Pthreads and Win32 programs will create the worker threads
using a strategy similar to that shown below:

/* We have to create M * N worker threads */
for (i = 0; 1 « M, 1i++)
for (j = 0; 3 < N; j++ ) {

struct v *data = (gtruct v *) malloc(sizeof (struct v)};
data-»>1i = 1i;
data-»>j = j;

/* Now create the thread passing it data as a parameter */

The data pointer will be passed to either the pthread_create() (Pthreads)
function or the CreateThread () (Win32) function, which in turn will pass it
as a parameter to the function that is to run as a separate thread.

Sharing of data between Java threads is different from sharing between
threads in Pthreads or Win32. One approach is for the main thread to create
and initialize the matrices A, B, and C. This main thread will then create the
worker threads, passing the three matrices—along with row i and column j —
to the constructor for each worker. Thus, the outline of a worker thread appears
as follows:

public class WorkerThread implements Runnable
{

private int row;

private int col;

private int[] [] A;

private int[][] B;

private int (][] C;

public WorkerThread (int row, int col, int{][] A,
int (101 B, int[) (] ¢ |

this.row = row;
this.col = col;
this.A = A;
this.B = B;
this.C = C;

}

public void run() {
/* calculate the matrix product in Clrow] I[col] */
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#define NUM_THREADS 10

/* an array of threads to be joined upon */
pthread.t workers [NUM.THREADS] ;

for (int 1 = 0; 1 < NUM.THREADS; i++)
pthread_join(workers[i], NULL);

Figure 4.12 Phtread code for joining ten threads.

Waiting for Threads to Complete

Once all worker threads have completed, the main thread will output the
product contained in matrix C. This requires the main thread to wait for
all worker threads to finish before it can output the value of the matrix
product. Several different strategies can be used to enable a thread to wait
for other threads to finish. Section 4.3 describes how to wait for a child
thread to complete using the Win32, Pthreads, and Java thread libraries.
Win32 provides the WaitForSingleObject () function, whereas Pthreads
and Java use pthread_join() and join(), respectively. However, in these
programming examples, the parent thread waits for a single child thread to
finish; completing this exercise will require waiting for multiple threads.

In Section 4.3.2, we describe the WaitForSingleObject () function, which
is used to wait for a single thread to finish. However, the Win32 API also
provides the WaitForMultipleObjects() function, which is used when
waiting for multiple threads to complete. WaitForMultipleObjects() is
passed four parameters:

1. The number of objects to wait for
2. A pointer to the array of objects
3. A flagindicating if all objects have been signaled

4. A timeout duration (or INFINITE)

For example, if THandles is an array of thread HANDLE objects of size N, the
parent thread can wait for all its child threads to complete with the statement:

WaitForMultipleObjects(N, THandles, TRUE, INFINITE);

A simple strategy for waiting on several threads using the Pthreads
pthread_join() or Java’s join() is to enclose the join operation within a
simple for Joop. For example, you could join on ten threads using the Pthread
code depicted in Figure 4.12. The equivalent code using Java threads is shown
in Figure 4.13.
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final static int NUM.THREADS = 10;

/* an array of threads to be joined upon */
Thread[] workers = new Thread [NUM.THREADS] ;

for (int i1 = 0; i < NUM_THREADS; i++) {
try {
workers[i] .join() ;
Jcatch (InterruptedException ie) {}

Figure 4.13 Java code for joining ten threads.
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CPU scheduling is the basis of multiprogrammed operating systems. By
switching the CPU among processes, the operating system can make the
computer more productive. In this chapter, we introduce basic CPU-scheduling
concepts and present several CPU-scheduling algorithms. We also consider the
problem of selecting an algorithm for a particular system.

In Chapter 4, we introduced threads to the process model. On operating
systems that support them, it is kernel-level threads—not processes—that are
in fact being scheduled by the operating system. However, the terms process
scheduling and thread scheduling are often used interchangeably. In this
chapter, we use process scheduling when discussing general scheduling concepts
and thread scheduling to refer to thread-specific ideas.

CHAPTER OBJECTIVES

* To introduce CPU scheduling, which is the basis for multiprogrammed
operating systems.

¢ To describe various CPU-scheduling algorithms.

» To discuss evaluation criteria for selecting a CPU-scheduling algorithm for
a particular system.

Basic Concepts

In a single-processor system, only one process can run at a time; any others
must wait until the CPU is free and can be rescheduled. The objective of
multiprogramming is to have some process running at all times, to maximize
CPU utilization. The idea is relatively simple. A process is executed until
it must wait, typically for the completion of some /0 request. In a simple
computer system, the CPU then just sits idle. All this waiting time is wasted;
no useful work is accomplished. With multiprogramming, we try to use this
time productively. Several processes are kept in memory at one time. When
one process has to wait, the operating system takes the CPU away from that
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process and gives the CPU to another process. This pattern continues. Every
time one process has to wait, another process can take over use of the CPU.

Scheduling of this kind is a fundamental operating-system function.
Almost all computer resources are scheduled before use. The CPU is, of course,
one of the primary computer resources. Thus, its scheduling is central to
operating-system design.

5.1.1 CPU-I/O Burst Cycle

The success of CPU scheduling depends on an observed property of processes:
Process execution consists of a cycle of CPU execution and 1/0 wait. Processes
alternate between these two states. Process execution begins with a CPU burst.
That is followed by an I/0 burst, which is followed by another CPU burst, then
another I/0 burst, and so on. Eventually, the final CPU burst ends with a system
request to terminate execution (Figure 5.1).

The durations of CPU bursts have been measured extensively. Although
they vary greatly from process to process and from computer to computer,
they tend to have a frequency curve similar to that shown in Figure 5.2. The
curve is generally characterized as exponential or hyperexponential, with a
large number of short CPU bursts and a small number of long CPU bursts.
An 1/O-bound program typically has many short CPU bursts. A CPU-bound

load store
add store CPU burst
read from file

wait for 1/O /O burst
store increment
index CPU burst
write to file

wait for I/O I/0O burst
load store
add store CPU burst

read from file

: .' wait forl/O /O burst

Figure 5.1 Alternating sequence of CPU and I/O bursts.
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Figure 5.2 Histogram of CPU-burst durations.

program might have a few long CPU bursts. This distribution can be important
in the selection of an appropriate CPU-scheduling algorithm.

5.1.2 CPU Scheduler

Whenever the CPU becomes idle, the operating system must select one of the
processes in the ready queue to be executed. The selection process is carried
out by the short-term scheduler (or CPU scheduler). The scheduler selects a
process from the processes in memory that are ready to execute and allocates
the CPU to that process.

Note that the ready queue is not necessarily a first-in, first-out (FIFO) queue.
As we shall see when we consider the various scheduling algorithms, a ready
queue can be implemented as a FIFO queue, a priority queue, a tree, or simply
an unordered linked list. Conceptually, however, all the processes in the ready
queue are lined up waiting for a chance to run on the CPU. The records in the
queues are generally process control blocks (PCBs) of the processes.

5.1.3 Preemptive Scheduling

CPU-scheduling decisions may take place under the following four circum-
stances:

1. When a process switches from the running state to the waiting state (for
example, as the result of an /0 request or an invocation of wait for the
termination of one of the child processes)
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2. When a process switches from the running state to the ready state {for
example, when an interrupt occurs)

3. When a process switches from the waiting state to the ready state (for
example, at completion of 1/0)

4. When a process terminates

For situations 1 and 4, there is no choice in terms of scheduling. A new process
(if one exists in the ready queue) must be selected for execution. There is a
choice, however, for situations 2 and 3.

When scheduling takes place only under circumstances 1 and 4, we say
that the scheduling scheme is nonpreemptive or cooperative; otherwise, it
is preemptive. Under nonpreemptive scheduling, once the CPU has been
allocated to a process, the process keeps the CPU until it releases the CPU either
by terminating or by switching to the waiting state. This scheduling method
was used by Microsoft Windows 3.x; Windows 95 introduced preemptive
scheduling, and all subsequent versions of Windows operating systems have
used preemptive scheduling. The Mac OS X operating system for the Macintosh
uses preemptive scheduling; previous versions of the Macintosh operating
system relied on cooperative scheduling. Cooperative scheduling is the only
method that can be used on certain hardware platforms, because it does not
require the special hardware (for example, a timer) needed for preemptive
scheduling.

Unfortunately, preemptive scheduling incurs a cost associated with access
to shared data. Consider the case of two processes that share data. While one
is updating the data, it is preempted so that the second process can run. The
second process then tries to read the data, which are in an inconsistent state. In
such situations, we need new mechanisms to coordinate access to shared data;
we discuss this topic in Chapter 6.

Preemption also affects the design of the operating-system kernel. During
the processing of a system call, the kernel may be busy with an activity on
behalf of a process. Such activities may involve changing important kernel
data (for instance, 1/0 queues). What happens if the process is preempted in
the middle of these changes and the kernel (or the device driver) needs to
read or modify the same structure? Chaos ensues. Certain operating systems,
including most versions of UNIX, deal with this problem by waiting either
for a system call to complete or for an I/0 block to take place before doing a
context switch. This scheme ensures that the kernel structure is simple, since
the kernel will not preempt a process while the kernel data structures are in
an inconsistent state. Unfortunately, this kernel-execution model is a poor one
for supporting real-time computing and multiprocessing. These problems, and
their solutions, are described in Sections 5.4 and 19.5.

Because interrupts can, by definition, occur at any time, and because
they cannot always be ignored by the kernel, the sections of code affected
by interrupts must be guarded from simultaneous use. The operating system
needs to accept interrupts at almost all times; otherwise, input might be lost or
output overwritten. So that these sections of code are not accessed concurrently
by several processes, they disable interrupts at entry and reenable interrupts
at exit. It is important to note that sections of code that disable interrupts do
not occur very often and typically contain few instructions.
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5.1.4 Dispatcher s

Another component involved in the CPU-scheduling function is the dispatcher.
The dispatcher is the module that gives control of the CPU to the process selected
by the short-term scheduler. This function involves the following:

e Switching context
¢ Switching to user mode

® Jumping to the proper location in the user program to restart that program

The dispatcher should be as fast as possible, since it is invoked during every
process switch. The time it takes for the dispatcher to stop one process and
start another running is known as the dispatch latency.

Scheduling Criteria

Different CPU scheduling algorithms have different properties, and the choice
of a particular algorithm may favor one class of processes over another. In
choosing which algorithm to use in a particular situation, we must consider
the properties of the various algorithms.

Many criteria have been suggested for comparing CPU scheduling algo-
rithms. Which characteristics are used for comparison can make a substantial
difference in which algorithm is judged to be best. The criteria include the
following:

® CPU utilization. We want to keep the CPU as busy as possible. Concep-
tually, CPU utilization can range from 0 to 100 percent. In a real system, it
should range from 40 percent (for a lightly loaded system) to 90 percent
(for a heavily used system).

¢ Throughput. If the CPU is busy executing processes, then work is being
done. One measure of work is the number of processes that are completed
per time unit, called throughput. For long processes, this rate may be one
process per hour; for short transactions, it may be 10 processes per second.

® Turnaround time. From the point of view of a particular process, the
important criterion is how long it takes to execute that process. The interval
from the time of submission of a process to the time of completion is the
turnaround time. Turnaround time is the sum of the periods spent waiting
to get into memory, waiting in the ready queue, executing on the CPU, and
doing 1/0.

® Waiting time. The CPU scheduling algorithm does not affect the amount
of time during which a process executes or does 1/0; it affects only the- -
amount of time that a process spends waiting in the ready queue. Waiting
time is the sum of the periods spent waiting in the ready queue.

® Response time. In an interactive system, turnaround time may not be
the best criterion. Often, a process can produce some output fairly early
and can continue computing new results while previous results are being
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output to the user. Thus, another measure is the time from the submission
of a request until the first response is produced. This measure, called
response time, is the time it takes to start responding, not the time it takes
to output the response. The turnaround time is generally limited by the
speed of the output device.

[tis desirable to maximize CPU utilization and throughput and to minimize
turnaround time, waiting time, and response time. In most cases, we optimize
the average measure. However, under some circumstances, it is desirable
to optimize the minimum or maximum values rather than the average. For
example, to guarantee that all users get good service, we may want to minimize
the maximum response time.

Investigators have suggested that, for interactive systems (such as time-
sharing systems), it is more important to minimize the variance in the response
time than to minimize the average response time. A system with reasonable
and predictable response time may be considered more desirable than a system
that is faster on the average but is highly variable. However, little work has
been done on CPU-scheduling algorithms that minimize variance.

As we discuss various CPU-scheduling algorithms in the following section,
we will illustrate their operation. An accurate illustration should involve many
processes, each being a sequence of several hundred CPU bursts and 1/0 bursts.
For simplicity, though, we consider only one CPU burst (in milliseconds) per
process in our examples. Our measure of comparison is the average waiting
time. More elaborate evaluation mechanisms are discussed in Section 5.7.

Scheduling Algorithms

CPU scheduling deals with the problem of deciding which of the processes
in the ready queue is to be allocated the CPU. There are many different CPU
scheduling algorithms. In this section, we describe several of them.

5.3.1 First-Come, First-Served Scheduling

By far the simplest CPU-scheduling algorithm is the first-come, first-served
(FCFS) scheduling algorithm. With this scheme, the process that requests the
CPU first is allocated the CPU first. The implementation of the FCFS policy is
easily managed with a FIFO queue. When a process enters the ready queue, its
PCB is linked onto the tail of the queue. When the CPU is free, it is allocated to
the process at the head of the queue. The running process is then removed from
the queue. The code for FCFS scheduling is simple to write and understand.

The average waiting time under the FCFS policy, however, is often quite
long. Consider the following set of processes that arrive at time 0, with the
length of the CPU burst given in milliseconds:

Process Burst Time
P, 24
P> 3
P 3
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If the processes arrive in the order P, P», P;, and are served in FCFS erder,
we get the result shown in the following Gantt chart:

Pq Pa P3

0 24 27 30

The waiting time is 0 milliseconds for process Py, 24 milliseconds for process
P>, and 27 milliseconds for process P3. Thus, the average waiting time is (0
+ 24 + 27)/3 = 17 milliseconds. If the processes arrive in the order P>, P3, Py,
however, the results will be as shown in the following Gantt chart:

Py | Ps P;

0 3 6 30

The average waiting time is now (6 + 0 + 3)/3 = 3 milliseconds. This reduction
is substantial. Thus, the average waiting time under an FCFS policy is generally
not minimal and may vary substantially if the process’s CPU burst times vary
greatly.

In addition, consider the performance of FCFS scheduling in a dynamic
situation. Assume we have one CPU-bound process and many I1/0-bound
processes. As the processes flow around the system, the following scenario
may result. The CPU-bound process will get and hold the CPU. During this
time, all the other processes will finish their 1/0 and will move into the ready
queue, waiting for the CPU. While the processes wait in the ready queue, the
1/0 devices are idle. Eventually, the CPU-bound process finishes its CPU burst
and moves to an 1/0 device. All the 1/0-bound processes, which have short
CPU bursts, execute quickly and move back to the 1/0 queues. At this point,
the CPU sits idle. The CPU-bound process will then move back to the ready
queue and be allocated the CPU. Again, all the I/0 processes end up waiting in
the ready queue until the CPU-bound process is done. There is a convoy effect
as all the other processes wait for the one big process to get off the CPU. This
effect results in lower CPU and device utilization than might be possible if the
shorter processes were allowed to go first.

The FCFS scheduling algorithm is nonpreemptive. Once the CPU has been
allocated to a process, that process keeps the CPU until it releases the CPU, either
by terminating or by requesting 1/0. The FCFS algorithm is thus particularly
troublesome for time-sharing systems, where it is important that each user get
a share of the CPU at regular intervals. It would be disastrous to allow one
process to keep the CPU for an extended period.

5.3.2 Shortest-Job-First Scheduling

A different approach to CPU scheduling is the shortest-job-first (SJF) schedul-
ing algorithm. This algorithm associates with each process the length of the
process’s next CPU burst. When the CPU is available, it is assigned to the process
that has the smallest next CPU burst. If the next CPU bursts of two processes are
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the same, FCFS scheduling is used to break the tie. Note that a more appropriate
term for this scheduling method would be the shortest-next-CPU-burst algorithm,
because scheduling depends on the length of the next CPU burst of a process,
rather than its total length. We use the term SJF because most people and
textbooks use this term to refer to this type of scheduling.

As an example of SJF scheduling, consider the following set of processes,
with the length of the CPU burst given in milliseconds:

Process Burst Time

P 6
P, 8
P3 7
Py 3

Using SJF scheduling, we would schedule these processes according to the
following Gantt chart:

Py Pq P3 Py

0 3 9 16 24

The waiting time is 3 milliseconds for process P;, 16 milliseconds for process
P, 9 milliseconds for process P3, and 0 milliseconds for process Py. Thus, the
average waiting time is (3 + 16 + 9 + 0)/4 = 7 milliseconds. By comparison, if
we were using the FCFS scheduling scheme, the average waiting time would
be 10.25 milliseconds.

The SJF scheduling algorithm is provably optimal, in that it gives the
minimum average waiting time for a given set of processes. Moving a short
process before a long one decreases the waiting time of the short process more
than it increases the waiting time of the long process. Consequently, the average
waiting time decreases.

The real difficulty with the SJF algorithm is knowing the length of the next
CPU request. For long-term (job) scheduling in a batch system, we can use as
the length the process time limit that a user specifies when he submits the
job. Thus, users are motivated to estimate the process time limit accurately,
since a lower value may mean faster response. (Too low a value will cause
a time-limit-exceeded error and require resubmission.) SJF scheduling is used
frequently in long-term scheduling.

Although the §JF algorithm is optimal, it cannot be implemented at the level
of short-term CPU scheduling. There is no way to know the length of the next
CPU burst. One approach is to try to approximate SJF scheduling. We may not .
know the length of the next CPU burst, but we may be able to predict its value.
We expect that the next CPU burst will be similar in length to the previous ones.
Thus, by computing an approximation of the length of the next CPU burst, we
can pick the process with the shortest predicted CPU burst.

The next CPU burst is generally predicted as an exponential average of the
measured lengths of previous CPU bursts. Let ¢, be the length of the nth CPU
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burst, and let 7,41 be our predicted value for the next CPU burst. Then, for «, 0
< a <1, define

Tua1 = 0 by + (1 — )7y

This formula defines an exponential average. The value of #, contains our
most recent information; 7, stores the past history. The parameter « controls
the relative weight of recent and past history in our prediction. If a = 0, then
Tu+1 = Tn, and recent history has no effect (current conditions are assumed
to be transient); if a = 1, then 7,47 = t,, and only the most recent CPU burst
matters (history is assumed to be old and irrelevant). More commonly, o =
1/2, so recent history and past history are equally weighted. The initial 7y can
be defined as a constant or as an overall system average. Figure 5.3 shows an
exponential average with « =1/2 and 79 = 10.

To understand the behavior of the exponential average, we can expand the
formula for 7,41 by substituting for 7, to find

Thil = Oltn + (1 - OL)O“"nfl +---+ (1 - Ot)jatn~j +- 4+ (l - 0l-)”-"l"r(]-

Since both @ and (1 —~ «) are less than or equal to 1, each successive term has
less weight than its predecessor.

The SJF algorithm can be either preemptive or nonpreemptive. The choice
arises when a new process arrives at the ready queue while a previous process is
still executing. The next CPU burst of the newly arrived process may be shorter
than what is left of the currently executing process. A preemptive SJF algorithm

CPU burst (t) 6 4 6 4 13 13 13

"guess” (1) 10 8 6 6 5 9 i1 12

Figure 5.3 Prediction of the length of the next CPU burst.
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will preempt the currently executing process, whereas a nonpreemptive SJF
algorithm will allow the currently running process to finish its CPU burst.
Preemptive SJF scheduling is sometimes called shortest-remaining-time-first
scheduling.

As an example, consider the following four processes, with the length of
the CPU burst given in milliseconds:

Process Arrival Time Burst Time

P 0 8
P, 1 4
Ps 2 9
Py 3 5

If the processes arrive at the ready queue at the times shown and need the
indicated burst times, then the resulting preemptive SJF schedule is as depicted
in the following Gantt chart:

Pl P2 P4 ’ Pl P3

Process P is started at time 0, since it is the only process in the queue. Process
P, arrives at time 1. The remaining time for process P; (7 milliseconds) is
larger than the time required by process P» (4 milliseconds), so process P; is
preempted, and process P, is scheduled. The average waiting time for this
exampleis (10 = 1) + (1 — 1) + (17 — 2) + (5 — 3))/4 = 26/4 = 6.5 milliseconds.
Nonpreemptive SJF scheduling would result in an average waiting time of 7.75
milliseconds.

5.3.3 Priority Scheduling

The SJF algorithm is a special case of the general priority scheduling algorithm.
A priority is associated with each process, and the CPU is allocated to the process
with the highest priority. Equal-priority processes are scheduled in FCFS order.
An SJF algorithm is simply a priority algorithm where the priority (p) is the
inverse of the (predicted) next CPU burst. The larger the CPU burst, the lower
the priority, and vice versa. '

Note that we discuss scheduling in terms of high priority and [ow priority.
Priorities are generally indicated by some fixed range of numbers, such as 0
to 7 or 0 to 4,095. However, there is no general agreement on whether 0 is the
highest or lowest priority. Some systems use low numbers to represent low
priority; others use low numbers for high priority. This difference can lead to
confusion. In this text, we assume that low numbers represent high priority.

As an example, consider the following set of processes, assumed to have
arrived at time 0, in the order P;, P,, - -+, Ps, with the length of the CPU burst
given in milliseconds:
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Process Burst Time Priority 5
P 10 3
P 1 1
P 2 4
Py 1 5
Ps 5 2

Using priority scheduling, we would schedule these processes according to the
following Gantt chart:

P2 P5 Pl P3 Py

0 1 6 16 18 19

The average waiting time is 8.2 milliseconds.

Priorities can be defined either internally or externally. Internally defined
priorities use some measurable quantity or quantities to compute the priority
of a process. For example, time limits, memory requirements, the number of
open files, and the ratio of average I/0 burst to average CPU burst have been
used in computing priorities. External priorities are set by criteria outside the
operating system, such as the importance of the process, the type and amount
of funds being paid for computer use, the department sponsoring the work,
and other, often political, factors.

Priority scheduling can be either preemptive or nonpreemptive. When a
process arrives at the ready queue, its priority is compared with the priority
of the currently running process. A preemptive priority scheduling algorithm
will preempt the CPU if the priority of the newly arrived process is higher
than the priority of the currently running process. A nonpreemptive priority
scheduling algorithm will simply put the new process at the head of the ready
queue.

A major problem with priority scheduling algorithms is indefinite block-
ing, or starvation. A process that is ready to run but waiting for the CPU can
be considered blocked. A priority scheduling algorithm can leave some low-
priority processes waiting indefinitely. In a heavily loaded computer system, a
steady stream of higher-priority processes can prevent a low-priority process
from ever getting the CPU. Generally, one of two things will happen. Either the
process will eventually be run (at 2 AM. Sunday, when the system is finally
lightly loaded), or the computer system will eventually crash and lose all
unfinished low-priority processes. (Rumor has it that, when they shut down
the IBM 7094 at MIT in 1973, they found a low-priority process that had been
submitted in 1967 and had not yet been run.)

A solution to the problem of indefinite blockage of low-priority processes
is aging. Aging is a technique of gradually increasing the priority of processes
that wait in the system for a long time. For example, if priorities range from
127 (low) to 0 (high), we could increase the priority of a waiting process by
1 every 15 minutes. Eventually, even a process with an initial priority of 127
would have the highest priority in the system and would be executed. In fact,
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it would take no more than 32 hours for a priority-127 process to age to a
priority-0 process.

5.3.4 Round-Robin Scheduling

The round-robin (RR) scheduling algorithm is designed especially for time-
sharing systems. It is similar to FCFS scheduling, but preemption is added to
switch between processes. A small unit of time, called a time quantum or time
slice, is defined. A time quantum is generally from 10 to 100 milliseconds. The
ready queue is treated as a circular queue. The CPU scheduler goes around the
ready queue, allocating the CPU to each process for a time interval of up to 1
time quantum.

To implement RR scheduling, we keep the ready queue as a FIFO queue of
processes. New processes are added to the tail of the ready queue. The CPU
scheduler picks the first process from the ready queue, sets a timer to interrupt
after 1 time quantum, and dispatches the process.

One of two things will then happen. The process may have a CPU burst of
less than 1 time quantum. In this case, the process itself will release the CPU
voluntarily. The scheduler will then proceed to the next process in the ready
queue. Otherwise, if the CPU burst of the currently running process is longer
than 1 time quantum, the timer will go off and will cause an interrupt to the
operating system. A context switch will be executed, and the process will be
put at the tail of the ready queue. The CPU scheduler will then select the next
process in the ready queue.

The average waiting time under the RR policy is often long. Consider the
following set of processes that arrive at time 0, with the length of the CPU burst
given in milliseconds:

Process Burst Time

P, 24
P, 3
P; 3

If we use a time quantum of 4 milliseconds, then process P; gets the first
4 milliseconds. Since it requires another 20 milliseconds, it is preempted after
the first time quantum, and the CPU is given to the next process in the queue,
process P,. Since process P, does not need 4 milliseconds, it quits before its
time quantum expires. The CPU is then given to the next process, process Ps.
Once each process has received 1 time quantum, the CPU is returned to process
Py for an additional time quantum. The resulting RR schedule is

[ P, P, 2 P, P, P, P, By

0 4 7 10 14 18 22 26 30

The average waiting time is 17/3 = 5.66 milliseconds.
In the RR scheduling algorithm, no process is allocated the CPU for more
than 1 time quantum in a row (unless it is the only runnable process). If a
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process’s CPU burst exceeds 1 time quantum, that process is preempted and is
put back in the ready queue. The RR scheduling algorithm is thus preemptive.

If there are 1 processes in the ready queue and the time quantum is ¢,
then each process gets 1/n of the CPU time in chunks of at most g time units.
Each process must wait no longer than (n — 1) x ¢ time units until its
next time quantum. For example, with five processes and a time quantum of 20
milliseconds, each process will get up to 20 milliseconds every 100 milliseconds.

The performance of the RR algorithm depends heavily on the size of the
time quantum. At one extreme, if the time quantum is extremely large, the RR
policy is the same as the FCFS policy. If the time quantum is extremely small
(say, 1 millisecond), the RR approach is called processor sharing and (in theory)
creates the appearance that each of n processes has its own processor running
at 1/n the speed of the real processor. This approach was used in Control
Data Corporation (CDC) hardware to implement ten peripheral processors with
only one set of hardware and ten sets of registers. The hardware executes one
instruction for one set of registers, then goes on to the next. This cycle continues,
resulting in ten slow processors rather than one fast one. (Actually, since
the processor was much faster than memory and each instruction referenced
memory, the processors were not much slower than ten real processors would
have been.)

In software, we need also to consider the effect of context switching on the
performance of RR scheduling. Let us assume that we have only one process of
10 time units. If the quantum is 12 time units, the process finishes in less than 1
time quantum, with no overhead. If the quantum is 6 time units, however, the
process requires 2 quanta, resulting in a context switch. If the time quantum is
1 time unit, then nine context switches will occur, slowing the execution of the
process accordingly (Figure 5.4).

Thus, we want the time quantum to be large with respect to the context-
switch time. If the context-switch time is approximately 10 percent of the
time quantum, then about 10 percent of the CPU time will be spent in context
switching. In practice, most modern systems have time quanta ranging from
10 to 100 milliseconds. The time required for a context switch is typically less
than 10 microseconds; thus, the context-switch time is a small fraction of the
time quantum.

process time = 10 quantum context
switches
12 0
0 10
6 1
0 6 10
1 9

Figure 5.4 The way in which a smaller time quantum increases context switches.
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Figure 5.5 The way in which turnaround time varies with the time quantum.

Turnaround time also depends on the size of the time quantum. As we can
see from Figure 5.5, the average turnaround time of a set of processes does
not necessarily improve as the time-quantum size increases. In general, the
average turnaround time can be improved if most processes finish their next
CPU burst in a single time quantum. For example, given three processes of 10
time units each and a quantum of 1 time unit, the average turnaround time is
29. If the time quantum is 10, however, the average turnaround time drops to
20. If context-switch time is added in, the average turnaround time increases
for a smaller time quantum, since more context switches are required.

Although the time quantum should be large compared with the context-
switch time, it should not be too large. If the time quantum is too large, RR
scheduling degenerates to FCFS policy. A rule of thumb is that 80 percent of the
CPU bursts should be shorter than the time quantum.

5.3.5 Multilevel Queue Scheduling

Another class of scheduling algorithms has been created for situations in
which processes are easily classified into different groups. For example, a
common division is made between foreground (interactive) processes and
background (batch) processes. These two types of processes have different
response-time requirements and so may have different scheduling needs. In-
addition, foreground processes may have priority (externally defined) over
background processes.

A multilevel queue scheduling algorithm partitions the ready queue into
several separate queues (Figure 5.6). The processes are permanently assigned to
one queue, generally based on some property of the process, such as memory
size, process priority, or process type. Each queue has its own scheduling



5.3 Scheduling Algorithms 167

highest priority 4

lowest priority

Figure 5.6 Multilevel queue scheduling.

algorithm. For example, separate queues might be used for foreground and
background processes. The foreground queue might be scheduled by an RR
algorithm, while the background queue is scheduled by an FCFS algorithm.

In addition, there must be scheduling among the queues, which is com-
monly implemented as fixed-priority preemptive scheduling. For example, the
foreground queue may have absolute priority over the background queue.

Let’s look at an example of a multilevel queue scheduling algorithm with
five queues, listed below in order of priority:

System processes
Interactive processes
Interactive editing processes

Batch processes

SAN I

Student processes

Each queue has absolute priority over lower-priority queues. No process in the
batch queue, for example, could run unless the queues for system processes,
interactive processes, and interactive editing processes were all empty. If an
interactive editing process entered the ready queue while a batch process was
running, the batch process would be preempted.

Another possibility is to time-slice among the queues. Here, each queue gets
a certain portion of the CPU time, which it can then schedule among its various
processes. For instance, in the foreground-background queue example, the
foreground queue can be given 80 percent of the CPU time for RR scheduling
among its processes, whereas the background queue receives 20 percent of the
CPU to give to its processes on an FCFS basis.
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5.3.6 Multilevel Feedback-Queue Scheduling

Normally, when the multilevel queue scheduling algorithm is used, processes
are permanently assigned to a queue when they enter the system. If there
are separate queues for foreground and background processes, for example,
processes do not move from one queue to the other, since processes do not
change their foreground or background nature. This setup has the advantage
of low scheduling overhead, but it is inflexible.

The multilevel feedback-queue scheduling algorithm, in contrast, allows
a process to move between queues. The idea is to separate processes according
to the characteristics of their CPU bursts. If a process uses too much CPU time,
it will be moved to a lower-priority queue. This scheme leaves 1/0-bound and
interactive processes in the higher-priority queues. In addition, a process that
waits too long in a lower-priority queue may be moved to a higher-priority
queue. This form of aging prevents starvation.

For example, consider a multilevel feedback-queue scheduler with three
queues, numbered from 0 to 2 (Figure 5.7). The scheduler first executes all
processes in queue 0. Only when queue 0 is empty will it execute processes
in queue 1. Similarly, processes in queue 2 will only be executed if queues 0
and 1 are empty. A process that arrives for queue 1 will preempt a process in
queue 2. A process in queue 1 will in turn be preempted by a process arriving
for queue 0.

A process entering the ready queue is put in queue 0. A process in queue 0
is given a time quantum of 8 milliseconds. If it does not finish within this time,
it is moved to the tail of queue 1. If queue 0 is empty, the process at the head
of queue 1 is given a quantum of 16 milliseconds. If it does not complete, it is
preempted and is put into queue 2. Processes in queue 2 are run on an FCFS
basis but are run only when queues 0 and 1 are empty.

This scheduling algorithm gives highest priority to any process with a CPU
burst of 8 milliseconds or less. Such a process will quickly get the CPU, finish
its CPU burst, and go off to its next I/0 burst. Processes that need more than
8 but less than 24 milliseconds are also served quickly, although with lower
priority than shorter processes. Long processes automatically sink to queue
2 and are served in FCF$ order with any CPU cycles left over from queues 0
and 1.

quantum = 8

quantum = 16

Figure 5.7 Multilevel feedback queues.
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In general, a multilevel feedback-queue scheduler is defined by the
following parameters:

¢ The number of queues
® The scheduling algorithm for each queue

® The method used to determine when to upgrade a process to a higher-
priority queue

¢ The method used to determine when to demote a process to a lower-
priority queue

® The method used to determine which queue a process will enter when that
process needs service

The definition of a multilevel feedback-queue scheduler makes it the most
general CPU-scheduling algorithm. It can be configured to match a specific
system under design. Unfortunately, it is also the most complex algorithm,
since defining the best scheduler requires some means by which to select
values for all the parameters.

Multiple-Processor Scheduling

Our discussion thus far has focused on the problems of scheduling the CPU in
a system with a single processor. If multiple CPUs are available, load sharing
becomes possible; however, the scheduling problem becomes correspondingly
more complex. Many possibilities have been tried; and as we saw with single-
processor CPU scheduling, there is no one best solution. Here, we discuss
several concerns in multiprocessor scheduling. We concentrate on systems
in which the processors are identical —homogeneous—in terms of their
functionality; we can then use any available processor to run any process
in the queue. (Note, however, that even with homogeneous multiprocessors,
there are sometimes limitations on scheduling. Consider a system with an /0
device attached to a private bus of one processor. Processes that wish to use
that device must be scheduled to run on that processor.)

5.41 Approaches to Multiple-Processor Scheduling

One approach to CPU scheduling in a multiprocessor system has all scheduling
decisions, I/0 processing, and other system activities handled by a single
processor—the master server. The other processors execute only user code.
This asymmetric multiprocessing is simple because only one processor
accesses the system data structures, reducing the need for data sharing.

A second approach uses symmetric multiprocessing (SMP), where each
processor is self-scheduling. All processes may be in a common ready queue, or
each processor may have its own private queue of ready processes. Regardless,
scheduling proceeds by having the scheduler for each processor examine the
ready queue and select a process to execute. As we shall see in Chapter 6,
if we have multiple processors trying to access and update a common data
structure, the scheduler must be programmed c