
Reliability Service for Service Oriented
Architecture?

Arkadiusz Danilecki, Mateusz Ho lenko, Anna Kobusińska, Micha l
Szychowiak, and Piotr Zierhoffer

Institute of Computing Science
Poznań University of Technology, Poland

{Arkadiusz.Danilecki,Anna.Kobusinska,Michal.Szychowiak}@cs.put.poznan.pl,

{mateusz.holenko,piotr.zierhoffer}@gmail.com

Abstract. Nowadays, a major paradigm of large scale distributed pro-
cessing is service-oriented computing (or SOA, Service Oriented Archi-
tecture). To improve availability and reliability of SOA based systems
and applications, a Reliability Service (providing external support of
web services recovery) is proposed.
Keywords: fault tolerance, rollback-recovery, RESTful web services

1 Introduction

A service-oriented architecture allows to integrate new or legacy applica-
tions and to expose them via web interface as web services [5]. Such ser-
vices may cooperate with services from other providers. Therefore, SOA
systems are susceptible to faults, which are unavoidable in any large scale,
distributed system. There are many solutions of fault tolerance problem,
however, most of them are not well profiled for SOA systems due to their
specific characteristics, among which are: the autonomy of the service
providers; dynamic nature of the interaction; longevity of interaction; and
the inherent constant interaction with the outside world. Thus, there is a
need for fault tolerance mechanisms specially tailored for SOA.

The Reliability Service presented in this paper is specifically confined
to find the solution of fault tolerance problem using mechanisms other
than transactions or replication. This requirement has dictated several
design decisions. For example, we do not intend to implement compensa-
tion mechanisms. In order to support services during their recovery, The
proposed service logs messages and replays the requests and/or responses
in the case of failures. The elements of Reliability Service infrastructure
? The research presented in this paper was partially supported by the European

Union in the scope of the European Regional Development Fund program no.
POIG.01.03.01-00-008/08.



are built according to constraints of the Resource Oriented Architecture
[4], which follow the constraints of REST paradigm [1]. Currently the Reli-
ability Service supports only RESTful web services, however in the future
we intend to support also services with SOAP interfaces (also known as
Big Web Services).

The rest of the paper is structured as follows: the system model and
basic definitions are presented in Section 2. Section 3 describes the pro-
posed Reliability Service: its architecture and functionality. Finally, Sec-
tion 4 presents areas of possible future work and concludes the paper.

2 System Model and Basic Definitions

A fundamental SOA element is a service: autonomous, platform - indepen-
dent computational element with well-defined interface that implements
some business functionality and can be described, published, discovered
and accessed over the Internet using standard protocols. Services, created
and maintained by service providers (SP ), are used by service consumers
(SC). A client requesting access to the service may not know in advance
the identity of the SP , which will handle the request. The service may be
compound, i.e. built of other services (which can also be compound).

Business process is a sequence of interactions between many web ser-
vices that are performed to achieve business objectives. The definition of
a business process specifies the behavior of its participants (client appli-
cations and services) and describes the ordering of service invocations.
During the interaction, an obligation (i.e. a promise of an action in the
future) may be established. The obligation can be undone only explicitly
with compensation procedures. Business process definition specifies when
during an interaction an obligation is established. In the proposed ser-
vice we assume any information on business process definition, and in the
consequence we assume that every message may transmit an obligation.

In the paper, it is assumed that both, CP s and SP s are expected to
be piece-wise deterministic, i.e. they should generate the same results (in
particular, the same URIs for a new resource) in the result of multiple rep-
etition of the same requests, assuming the same initial state. Additionally,
the crash-recovery model of failures is assumed [2]. System components
can fail at arbitrary moments, but every failure is eventually detected,
for example by the failure detection service. The failed SP becomes tem-
porally unavailable until it is restored. The state of SP , which can be
correctly reconstructed after a failure is called a recovery point. In order
to create recovery points, logs and periodic checkpoints may be used. We



assume that SP makes the decision to take a checkpoint independently
and in general, it may take no checkpoints at all. Similarly, CP may or
may not save its state. It is important to emphasize that the proposed
service does not dictate checkpoint policies neither to SP , not to CP .

3 Business Process Reliability Service

3.1 Reliability Service Architecture

The Reliability Service architecture is presented in Figure 1. The main
module of the Service is the Recovery Management Unit (RMU) (con-
ceptually, many different RMUs may exist, but in the current prototype
there is only one). Other two modules are proxy servers: Client Proxy Unit
(CPU) and Service Proxy Unit(SPU). Their role is to hide the service
architecture details from clients and services, respectively. Any service at
any moment may call other services; such a service becomes a client itself
and as a consequence, it has also its own CPU apart from the SPU .

Fig. 1. Reliability Service Architecture

The RMU records all invocations and responses sent between clients
and services. In order to ensure the proper load balancing and high avail-
ability, the RMU will be replicated. Three main modules of the RMU
are: Stable Storage (SS), implemented over a database, Management Unit
(MU) and Garbage Collection Module (GCM). A GCM module prevents
the amount of data held by SS to grow indefinitely, by removing the in-
formation not used any longer. Because of the space limitations, in this
paper we do not further explain this module’s role.

The role of the CPU is to intercepts all requests issued by a client,
to modify these requests accordingly to the RMU requirements, and to



send them to the RMU . We assume that the CPU fails together with
the client; the simultaneous failures are forced if necessary.

The SPU is located at the service provider site. It’s primary task is
monitoring the service and responding to service failures. In the case of
failure (detected by Service Oriented Failure Detection Service [3]), the
SPU is responsible for initiating and managing the rollback-recovery pro-
cess. The SPU serves a role of façade for the service: the service should be
available only via the SPU . There is exactly one SPU per service. Clients
may use only registered services. We assume reliable communication link
between the SPU and the service.

3.2 The execution of a business process with the Reliability
Service

When the user logs in to the client application it is asked for its identifier.
The RMU may be then contacted to get the last saved client’s state
(which could be written during logout from other machine). All requests
first pass through client’s CPU , that forwards them to the RMU .

If the request is not guaranteed to be read-only then the RMU saves
it in its SS module. The request is then forwarded to the SPU , which
then passes it to the service. The service receives a request and executes
it in accordance with its business logic. SPU intercepts a response sent
from the service. The Response-Id identifier attached to the response
reflects the order in which response was generated by the service. SPU
forwards response to the RMU .

RMU uses Response-Id to force FIFO on communication link to the
SPU (i.e the responses are postponed until all previous responses arrived
to). The response is logged in the SS module. Additionally, the response is
also stored as the last response sent to the client who initiated the request,
and the value Response-Id is stored as the Last-Response received from
the service. Once this is done the response is passed to the CPU . The
CPU removes all custom HTTP headers added by the Reliability Service
components before passing it to the client.

The messages may be retransmitted periodically; the duplicates are
detected by RMU , SPU and CPU use set of message identifiers. There-
fore, exactly once delivery is guaranteed in the case of failure-free execu-
tion.

In the case of client’s application failure, for some clients the last re-
sponse from the service may be enough for recovery (according to the HA-
TEOAS principle of Resource Oriented Architecture). Such clients may



start by contacting with RMU and requesting the last response stored
by RMU . Then they directly proceed with the execution.

If the last response is not sufficient for client’s revival, such a client
must cooperate with Reliability Service. At the beginning, the client
should first recover using its own local checkpoints or logs. Later client
sends requests to the CPU as usual. The requests are forwarded to the
RMU . If the RMU already has the response for the request, it sends such
a response to the client. The duplicate requests are ignored by RMU .
Since the client is piece-wise deterministic, it should reconstruct its state
up to the point of the last request sent before the failure. Finally the
client sends a request for which RMU has no stored response and which
was not received in the past by the RMU . This indicates that client’s
recovery is finished at this point, and RMU starts to forward the request
to SPU .

Once service’s failure is detected, or if the SPU fails itself, the service’s
rollback-recovery process starts. At the restart, the SPU asks the service
for the list of available recovery points, along with the Saved-Response
identifier. If the last recovery point contains responses, they are first sent
to the RMU , and SPU waits until they are acknowledged by RMU before
proceeding. Afterwords, the SPU asks the RMU for the Last-Response
identifier.

The service must be rolled back to the latest recovery point for which
the Saved-Response is less from or equal to the received Last-Response.
Later the SPU asks RMU for a sequence of requests, informing RMU
about value of the Saved-Response of the chosen recovery point. The
RMU selects from its SS module all requests with no response or for
which the response contains the identifier Response-Id greater than or
equal to the Saved-Response value received from the SPU . If RMU has
a response for a request and its Response-Id is less than Last-Response,
the Response-Id is attached to the request, in order to inform the SPU
on the original order of request execution.

After receiving requests from the RMU , the SPU may start the re-
covery. First the requests with a Response-Id are passed sequentially to
the service, in order of their Response-Id. The SPU waits for response
before sending next request. Finally the remaining requests are executed,
in any order. Any error during the service or client recovery cause signal
an exception to upper layers, which should then solve them using its own
logic, e.g. using compensation procedures.



We require any interaction with the outside world to be modeled as
a call to an external service. It’s the service responsibility to ensure that
such interactions are not repeated. A failure or forced rollback of one
service should not force other services to rollback. In order to achieve
this goal, Reliability Service stalls the calls to external services whenever
there is a possibility that failure of a service could force rollback of other
services.

4 Conclusions and the Future Work

This paper describes the Reliability Service providing support to web
services reliability. It respects web services local recovery autonomy, and
does not force any particular technique to create service recovery points.
It allows to recreate lost service states in the case, when the local recov-
ery policy is unable to achieve this (e.g. with damaged checkpoint files, or
obsolete service replicas), at the cost of forcing few restrictions on service
behavior. For the moment being, the prototype of the proposed service
is under constant improvement: the RMU neither requires nor needs any
preliminary knowledge on the service structure, business process defini-
tion, or application logic (e.g. which messages transmit obligations). Many
optimizations are possible if the RMU would have an access to such in-
formations. Moreover, transparency of the Reliability Service could be
enhanced. The future work on the Reliability Service assumes further im-
provement of the proposed service efficiency. Moreover, a development of
the mechanisms increasing the service transparency and replication mech-
anisms of the RMU will be carried out. Finally, minimizing recovery time
and reducing failure-free overhead is needed.

References

1. Roy T. Fielding. Architectural Styles and the Design of Network-based Software
Architectures. PhD thesis, University of California, Irvine, 2000.

2. Rachid Guerraoui and Luis Rodrigues. Introduction to distributed algorithms.
Springer-Verlag, 2004.

3. Jaros law Kamiński, Marcin Kaźmierczak, Jacek Kobusiński, Szymon Nowacki, and
Krzysztof Rosiński. Failure detection mechanism in SOA environments. Techni-
cal Report TR-ITSOA-OB1-4-PR-09-02, Institute of Computing Science, Poznań
University of Technology, May 2009.

4. Leonard Richardson and Sam Ruby. RESTful Web Services. O’Reilly, 2007.
5. Erl Thomas. SOA Principles of Service Design. Prentice Hall PTR, 2007.


