
Using Speculative Push for Unnecessary
Checkpoint Creation Avoidance

Arkadiusz Danilecki and Micha�l Szychowiak

Institute of Computing Science
Poznań University of Technology

Piotrowo 3a, 60-965 Poznań, Poland
{adanilecki, mszychowiak}@cs.put.poznan.pl

Abstract. This paper discusses a way of incorporating speculation tech-
niques into Distributed Shared Memory (DSM) systems with checkpoint-
ing mechanism without creating unnecessary checkpoints. Speculation is
a general technique involving prediction of the future of a computation,
namely accesses to shared objects unavailable on the accessing node (read
faults). Thanks to such predictions objects can be pushed to requesting
nodes before the actual access operation is performed, resulting, at least
potentially, in a considerable performance improvement. This mechanism
is a foundation for the proposed SpecCkpt protocol based on indepen-
dent checkpointing integrated with a coherence protocol for a given con-
sistency model introducing little overhead. It ensures the consistency of
checkpoints, at the same time allowing a fast recovery from failures.

1 Introduction

Modern Distributed Shared Memory (DSM) systems reveal increasing demands
for efficiency, reliability and robustness. System developers tend to deliver fast
systems which would allow to parallelize distributed processes efficiently. Unfor-
tunately, failures of some system nodes can cause process crashes resulting in a
loss of results of the processing and requiring to restart the computation from
the beginning. One of the techniques used to prevent such restarts is check-
pointing. Checkpointing consists in saving the processing state periodically (a
checkpoint), in order to restore the saved state in case of further failure. Only
checkpoints which represent a consistent global state of the system can be used
when restarting computation (the state of a DSM system is usually identified
with the content of the memory).

There are two major approaches to checkpointing: coordinated (synchronous)
and independent (asynchronous). Coordinated checkpointing requires expensive
synchronization between all (or a part of) the distributed processes, in order
to ensure the consistency of the saved states. The significant overhead of this
approach makes it impractical unless the checkpoint synchronization is corre-
lated with synchronization operations of a coherence protocol ([7]). On the other
hand, the independent checkpointing does not involve interprocess synchroniza-
tion but, in general, does not guarantee the consistency. After a failure occurs, a

F. Eliassen and A. Montresor (Eds.): DAIS 2006, LNCS 4025, pp. 309–315, 2006.
c© IFIP International Federation for Information Processing 2006

310 A. Danilecki and M. Szychowiak

consistent checkpoint must be found among all saved checkpoints, therefore the
recovery takes much more time and may require more recomputation. A variant
of the independent checkpoint – communication induced checkpointing (or depen-
dency induced checkpointing) – offers simple creation of consistent checkpoints,
by storing a new checkpoint each time a recovery dependency is created (e.g.
interprocess communication). However, its overhead is too prohibitive for gen-
eral distributed applications. Nevertheless, this approach has been successfully
applied in DMS systems in strict correlation with memory coherence protocols.
This correlation allows to reduce the number of the actual dependencies and to
limit the checkpointing overhead significantly ([9]).

Speculation, on the other hand, is a technique which promises to increase the
speed of DSM operations and to reduce the gap between DSM and message-
passing systems. The speculation may involve speculative pushes of shared ob-
jects to processing nodes, before they actually demand access [10], prefetching
of the shared objects with anticipation that the application process would need
those objects ([1]) or self invalidation of shared objects to reduce the frequency
of ”3-hop-misses” ([8]) among other techniques.

This paper is organized as follows. In section 2, we present a formal defini-
tion of the system model and speculation operations. The previous work in this
field, including the first variant of SpecCkpt protocol, is briefly described in Sec-
tion 3. Section 4 discusses the ways of combining speculative pushes into DSM
systems with checkpointing. Preliminary results are contained within Section 5
Concluding remarks and future work are proposed in Section 6.

2 DSM System Model

A DSM system is an asynchronous distributed system composed of a finite set
of sequential processes P1, P2, ..., Pn that can access a finite set O of shared
objects. Each Pi is executed on a DSM node ni composed of a local processor and
a volatile local memory used to store shared objects accessed by Pi. Each object
consists of several values (object members) and object methods which read and
modify object members (here, we adopt the object-oriented approach; however,
our work is also applicable to variable-based or page-based shared memory).
The concatenation of the values of all members of object x ∈ O is referred to
as object value of x. Here, we consider read-write objects, i.e. each method of x
has been classified either as read-only (if it does not change the value of x and
in the case of nested method invocation, all invoked methods are also read-only)
or read-and-modify (otherwise). Read access ri(x) to object x is issued when
process Pi invokes a read-only method of object x. Write access wi(x) to object
x is issued when process Pi invokes any other method of x. Each write access
results in a new object value of x.

To increase the efficiency of DSM, objects are replicated on distinct hosts,
allowing concurrent access to the same data. A consistent state of DSM
objects replicated on distinct nodes is maintained by a coherence protocol and
depends on the assumed consistency model. Usually, one replica of every object

Using Speculative Push for Unnecessary Checkpoint Creation Avoidance 311

is distinguished as a master replica. The set of all replicas of a given object is re-
ferred to as a copyset. The process holding master replica of object x is called x’s
owner. A common approach is to enable the owner an exclusive write access to
the object. However, when no write access to x is performed, the object can have
several replicas simultaneously accessible only for reading (shared replicas). The
speculation introduces a special part of the system, called the predictor, which
is responsible for predicting future actions of the processes (e.g. future read and
write accesses) and proper reactions.

As a result of a read access issued to an object locally unavailable, the object is
fetched from its owner and brought to the requester. Using speculation, however,
the object may be fetched from its owner also before the actual read access (i.e.
prefetched) or forwarded by the owner to potential object users (i.e. pushed),
as a result of prediction. By pi(x) we will denote a prefetch operation of object
x resulting from the prediction made at process Pi. By fi,j(x) we will denote
a push operation of object x from owner Pi to potential object user Pj . The
prediction is successful if the pushed or prefetched object is actually used, and
the read fault is avoided. If the prefetched or pushed object is never used, the
prediction was unsuccessful (and is referred to as misprediction).

Dependency of operations is a relation arising between wi(x) and any sub-
sequent rj(x), pj(x) or fi,j(x) i.e. when process Pj uses (reads) a value previ-
ously written by Pi. Local dependency reflects the order of operations performed
by a single process. To ensure system consistency in case of a failure, the sys-
tem forces the object owner to make a checkpoint each time the dependency
arises.

3 Previous Work

In the previous work on reliable speculative DSM systems ([4], [3]), it has been
shown that a naive implementation of the speculation and, more specifically,
prefetching may reduce DSM efficiency by introducing false dependencies, which
in turn increase the number of unnecessary checkpoints. Since prefetches are
seen by the object owner as read accesses, they create dependencies. However,
because they are speculative operations, the object owner has no way to deter-
mine whether a prefetched object will actually be used (prediction was success-
ful) or will be invalidated before using or never accessed by requesting node (on
misprediction).

These problems are summarized as follows:

– An access to objects (fetches) may result from the speculation made by the
predictor and therefore (in case of a false prediction), may not create a real
dependency;

– Even when the access is explicitly marked as speculative, the process has
no way of determining whether a true dependency between processes will
ever be created, since it cannot determine whether the prediction is correct
(otherwise, it wouldn’t be a speculation).

312 A. Danilecki and M. Szychowiak

To avoid the creation of unnecessary checkpoints, the changes to the under-
lying checkpointing protocol have been proposed. They consist in introducing a
new replica state (PREFETCHED) and operation decoupling. In the proposed
SpecCkpt protocol, prefetched objects are put into a special PREFETCHED
state. The access to prefetch object would then require getting confirmation
from the owner. This confirmation would be granted or not, depending on the
underlying coherence protocol.

This protocol avoids unnecessary checkpoints at the cost of reducing positive
speculation effects (even a successful prediction needs a confirmation message).
We have verified our protocol using a simulated DSM system (see sec. 5) and we
found our results somewhat dissatisfying. In some of the tested application our
protocol behaved surprisingly bad, so we decided to search for another techniques.

4 Speculative Push

Another way of avoiding the creation of unnecessary checkpoints may be using a
different speculation technique, namely speculative push. In prefetching, specu-
lation is triggered by the node which has the object in the INVALID state; in the
speculative push, it is the object’s owner who triggers the speculation, pushing
the object to potential requesters. It may be observed that in the prefetching,
the requesting node has no way of determining whether the object owner has
already checkpointed the object. So, it does not know whether the prefetch re-
quest would force the object owner to take a checkpoint, or not. In the latter
technique however, the object’s owner has obviously a full knowledge of its own
local state and therefore is able to determine when the speculation results in
making a checkpoint. Usually, the object’s owner forwards the object to antic-
ipated requesters after it finishes the object modifications. However, this may
involve creating a checkpoint, which may be unnecessary (because the push may
result from misprediction).

Our proposal is to trigger a speculative push of the object each time the object
is checkpointed. Therefore, even if the push is unnecessary and creates a false
dependency, it does not introduce additional costs (since the page is already
checkpointed).

We have tested this proposal for sequential consistency model and MSI (Mod-
ified, Shared, Invalid) coherence protocol. The implemented algorithm is de-
scribed as follows:

– Between the checkpoints, the object’s owner records remote accesses to the
objects in the SHARED state. Those will be potential candidates for data
forwarding. Essentially, it is the object copyset.

– On local write access, the owner invalidates the copyset but keeps the list of
the potential candidates (possible copyset).

– If the owner has the object in the MODIFIED state and receives a read
request, it checkpoints the page before answering. The requester is removed
from possible copyset list but added to the copyset list.

Using Speculative Push for Unnecessary Checkpoint Creation Avoidance 313

– After the owner has successfully checkpointed the object, it forwards the
object to all potential requesters and clears the possible copyset list. Such
new replicas are put into a special PUSHED state (and the respective nodes
are put into the master replica copyset).

– Request from a node is ignored if the owner has already pushed the object
to that node.

– The access to a replica in the PUSHED state is treated as the access to replica
in the SHARED state, with the exception when a confirmation is sent to the
owner. The only purpose of this confirmation is to provide feedback for the
owner, so that it could add the node again to the possible copyset list.

5 Preliminary Results

The simulation was performed with the use of a backend [5] to Augmint simu-
lator [2] and a set of applications from the SPLASH-2 suite [6]. The obtained
results should be treated rather as indications of the trends, not the final results.
Compared to the results found in literature, our simulation consequently tends
to be too optimistic about the positive effects of prediction, probably because
of the simplified simulator architecture (the impact of increased network traffic,
costs of the owner searching, the cost of a single checkpoint is modelled as a
constant).

Due to the space limits, we present only some of the results here. The following
basic set of prefetch techniques was used for comparison: simple stride-based
prefetch; prefetching pages which were recently invalidated; prefetching the same
set of pages which were used before attempting a barrier; prefetching neighboring
pages; and combination of all those techniques.

Table 1. The results of the simulation with standard application inputs and 8 pro-
cesses, using the best prefetch technique

Application name (a) (b) (c) (d) (e) (f) (g)
barnes 46 97 97 38 101 100 95

fft 11 98 97 54 103 101 100
lu 36 87 85 43 108 102 95

fmm 33 100 100 36 103 100 97

Different prefetching techniques prove to yield the best effects for different
applications. We decided to choose those which were the most and the least effi-
cient for every application and compare the reduction of execution time against
the base checkpointing protocol without speculation. Relative reduction of exe-
cution time is shown in table 1. First, we evaluated the prefetching used without
any modifications of the base MSI checkpointing protocol (column b and e).
Then, we compared it to SpecCkpt protocol using the same techniques (column
c and f). The misprediction ratio for those techniques can be found in columns

314 A. Danilecki and M. Szychowiak

a and d. Finally, the g column represents the relative execution times achieved
with SpecCkpt protocol using speculative pushes.

From the whole set of the obtained results, we concluded that the most influen-
tial factor is the misprediction ratio. If the misprediction ratio is low, then usually
our SpeckCkpt protocol, using either prefetches or pushes, is outperformed by
the base protocol. However, for different applications different techniques turned
out to have a low misprediction ratio. It would be, in general, impossible for a
DSM system to determine the best suited technique in advance. Therefore, in
real systems, higher misprediction ratio is to be expected.

6 Conclusions

This paper proposed the use of speculative pushes instead of speculative
prefetches in DSM systems with checkpointing. Since the object owner is able
to determine whether the push will result in checkpoint or not, it may decide
when the pushes do not introduce additional significant costs resulting from the
checkpoints.

We intend to implement our protocols first in another simulator (to validate
our results) and then in the real linux-based DSM system. We are in the process
of validating and preparing tests of a few other ideas of improving our protocols,
namely prefetch delaying and speculative checkpoints.

References

1. Bianchini, R., Pinto, R., Amorim, C. L.: Data Prefetching for Software DSMs.
Proc. Int. Conference on Supercomputing, Melbourne, Australia (1998)

2. Carbajal, J., Michael, M., Nguyen, A-T., Torrellas, J., Sharma, A.: Augmint: A
Multiprocessor Simulation Environment for Intel x86 Architectures. CSRD Tech-
nical Report 1463, March 1996

3. Danilecki A., Szychowiak M.: Checkpointing Speculative Distributed Shared Mem-
ory. To appear in Proc. 6th Int. Conference on Parallel Processing and Applied
Mathematics PPAM’2005, Poznan 2005

4. Danilecki A., Szychowiak M.: Checkpointing Speculative DSM Systems, Research
Report RA-021/05, Institute of Computing Science, Poznan University of Technol-
ogy, 2005.

5. Danilecki A., Szychowiak M., Kobusinski J.: Simplified DSM simulation with the
use of the Augmint backend, Research Report RA-04/06, Institute of Computing
Science, Poznan University of Technology, 2006.

6. Gupta, A., Ohara, M., Singh, J., Torrie, E., Woo, S., The SPLASH2 Programs:
Characterization and Methodological Considerations. Proc. 22nd Int. Symposium
on Computer Architecture (ISCA 1995), May 1995

7. Kongmunvattana, A., Tanchatchawal, S., Tzeng, N.-F.: Coherence-Based Coordi-
nated Checkpointing for Software Distributed Shared Memory Systems. Proc. 20th

Conference on Distributed Computing Systems (2000) 556–563
8. Lai, A-C., Babak Falsafi, B.: Selective, Accurate, and Timely Self-Invalidation Us-

ing Last-Touch Prediction. Proc. 27th Int. Symposium on Computer Architecture
(ISCA 27), Vancouver, BC, Canada (2000) 139–148

Using Speculative Push for Unnecessary Checkpoint Creation Avoidance 315

9. Park, T., Yeom, H. Y.: A Low Overhead Logging Scheme for Fast Recovery in Dis-
tributed Shared Memory Systems. Journal of Supercomputing Vo.15. No.3. (2002)
295–320

10. Rajwar, R., Kagi, A., Goodman, J. R.: Inferential Queueing and Speculative Push.
International Journal of Parallel Programming (IJPP) Vo. 32. No. 3 (2004) 273–284

	Introduction
	DSM System Model
	Previous Work
	Speculative Push
	Preliminary Results
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

